Skip to main content

Advertisement

Log in

Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO2) and nitrous oxide (N2O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO2 and N2O emissions. Under both drying–wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N2O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ameloot, N., Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., et al. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology & Biochemistry, 57(3), 401–410.

    Article  CAS  Google Scholar 

  • Asai, H., Samson, B., Stephan, H., Songyikhangsuthor, K., Homma, K., Kiyono, Y., et al. (2009). Biochar amendment techniques for upland rice production in Northern Laos1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(Suppl. 1–2), 81–84.

    Article  Google Scholar 

  • Blum, S. C., Lehmann, J., Solomon, D., Caires, E. F., & Alleoni, L. R. F. (2013). Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma, 200–201(6), 156–164.

    Article  Google Scholar 

  • Bollmann, A., & Conrad, R. (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4(4), 387–396.

    Article  Google Scholar 

  • Bouwman, A. (1996). Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46(1), 53–70.

    Article  CAS  Google Scholar 

  • Bremner, J. M. (1997). Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1), 7–16.

    Article  CAS  Google Scholar 

  • Bruun, E. W., Muller-Stover, D., Ambus, P., & Hauggaard-Nielsen, H. (2011). Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of Soil Science, 62(4), 581–589.

    Article  CAS  Google Scholar 

  • Carter, M. R., & Gregorich, E. G. (2006). Soil sampling and methods of analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A., Hanley, K., Enders, A., & Lehmann, J. (2013). Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports, 3(7446), 542.

    Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444.

    Article  Google Scholar 

  • Chowdhury, N., Yan, N., Islam, M. N., & Marschner, P. (2011). The extent of drying influences the flush of respiration after rewetting in non-saline and saline soils. Soil Biology & Biochemistry, 43(11), 2265–2272.

    Article  CAS  Google Scholar 

  • Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O’Callaghan, M., Sherlock, R. R., et al. (2010). Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America Journal, 74(3), 852–860.

    Article  CAS  Google Scholar 

  • Dalal, R. C., Wang, W. J., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: A review. Australian Journal of Soil Research, 41(2), 165–195.

    Article  CAS  Google Scholar 

  • Delwiche, C. C. (1981). Denitrification, nitrification and atmospheric nitrous oxide. New York: Wiley.

    Google Scholar 

  • Denef, K., Six, J., Bossuyt, H., Frey, S. D., Elliott, E. T., Merckx, R., et al. (2001). Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology & Biochemistry, 33(12), 1599–1611.

    Article  CAS  Google Scholar 

  • Fierer, N., Schimel, J., & Holden, P. (2003). Influence of drying–rewetting frequency on soil bacterial community structure. Microbial Ecology, 45(1), 63–71.

    Article  CAS  Google Scholar 

  • Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In M. O. Andreae & D. S. Schimel (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere (Vol. 47, pp. 7–21). New York: Wiley.

    Google Scholar 

  • Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31(6), 426–432.

    Article  CAS  Google Scholar 

  • Franzluebbers, K., Weaver, R., Juo, A., & Franzluebbers, A. (1994). Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and in repeatedly dried and wetted soil. Soil Biology & Biochemistry, 26(10), 1379–1387.

    Article  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biology and Fertility of Soils, 35(4), 219–230.

    Article  CAS  Google Scholar 

  • Halverson, L. J., Jones, T. M., & Firestone, M. K. (2000). Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Science Society of America Journal, 64(5), 1630–1637.

    Article  CAS  Google Scholar 

  • Harris, R. (1981). Effect of water potential on microbial growth and activity. In J. F. Elliott, R. I. Papendick, & R. E. Wildung (Eds.), Water potential relations in soil microbiology (pp. 23–95). Madison: Soil Science Society of America.

    Google Scholar 

  • Jenkinson, D. S., Brookes, P. C., & Powlson, D. S. (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36(1), 5–7.

    Article  CAS  Google Scholar 

  • Jones, B. E. H., Haynes, R. J., & Phillips, I. R. (2010). Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. Journal of Environmental Management, 91(11), 2281–2288.

    Article  CAS  Google Scholar 

  • Jones, D., Murphy, D., Khalid, M., Ahmad, W., Edwards-Jones, G., & DeLuca, T. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology & Biochemistry, 43(8), 1723–1731.

    Article  CAS  Google Scholar 

  • Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H.-W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 345(1), 195–210.

    Article  CAS  Google Scholar 

  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science and Technology, 44(16), 6189–6195.

    Article  CAS  Google Scholar 

  • Keeney, D. R. & Nelson, D. (1982). Nitrogen - inorganic forms. in: Methods of soil analysis. Part 2. Chemical and microbiological properties, (Eds.) A.L. Page, R.H. Miller, D.R. Keeney, SSSA. Madison, pp. 643–698.

  • Kieft, T. L. (1987). Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology & Biochemistry, 19(2), 119–126.

    Article  Google Scholar 

  • Klute, A. (1986). Methods of soil analysis. Part 1. Physical and mineralogical methods. Madison: American Society of Agronomy Inc.

    Google Scholar 

  • Knoblauch, C., Maarifat, A. A., Pfeiffer, E. M., & Haefele, S. M. (2011). Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology & Biochemistry, 43(9), 1768–1778.

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems—A review. Mitigation and Adaptation Strategies for Global Change, 11(2), 395–419.

    Article  Google Scholar 

  • Lehmann, J., Nguyen, B. T., Kinyangi, J., Smernik, R., Riha, S. J., & Engelhard, M. H. (2009). Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 92(1–2), 163–176.

    Google Scholar 

  • Liu, X. J., Mosier, A. R., Halvorson, A. D., & Zhang, F. S. (2006). The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil, 280(1–2), 177–188.

    Article  CAS  Google Scholar 

  • Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., & Wu, W. (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11(6), 930–939.

    Article  CAS  Google Scholar 

  • Lv, J., Liu, X., Liu, H., Wang, X., Li, K., Tian, C., et al. (2014). Greenhouse gas intensity and net annual global warming potential of cotton cropping systems in an extremely arid region. Nutrient Cycling in Agroecosystems, 98(1), 15–26.

    Article  CAS  Google Scholar 

  • Mavi, M. S., Marschner, P., Chittleborough, D. J., Cox, J. W., & Sanderman, J. (2012). Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology & Biochemistry, 45, 8–13.

    Article  CAS  Google Scholar 

  • Miller, A. E., Schimel, J. P., Meixner, T., Sickman, J. O., & Melack, J. M. (2005). Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology & Biochemistry, 37(12), 2195–2204.

    Article  CAS  Google Scholar 

  • Mosier, A., Halvorson, A., Peterson, G., Robertson, G., & Sherrod, L. (2005). Measurement of net global warming potential in three agroecosystems. Nutrient Cycling in Agroecosystems, 72(1), 67–76.

    Article  CAS  Google Scholar 

  • Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., & Van Cleemput, O. (1998). Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 52(2–3), 225–248.

    Article  CAS  Google Scholar 

  • Nocentini, C., Guenet, B., Di Mattia, E., Certini, G., Bardoux, G., & Rumpel, C. (2010). Charcoal mineralisation potential of microbial inocula from burned and unburned forest soil with and without substrate addition. Soil Biology & Biochemistry, 42(9), 1472–1478.

    Article  CAS  Google Scholar 

  • Olsen, S., Cole, C., & Watanabe, F. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: USDA.

    Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Berlin: Springer.

    Google Scholar 

  • Parr, J., Gardner, W. R., & Elliot, L. (1981). Water potential relations in soil microbiology. In Proceedings of a symposium, SSSA special publication, Madison.

  • Pietikainen, J., Kiikkila, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242.

    Article  CAS  Google Scholar 

  • Pulleman, M., & Tietema, A. (1999). Microbial C and N transformations during drying and rewetting of coniferous forest floor material. Soil Biology & Biochemistry, 31(2), 275–285.

    Article  CAS  Google Scholar 

  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271–284.

    Article  CAS  Google Scholar 

  • Samonin, V. V., & Elikova, E. E. (2004). A study of the adsorption of bacterial cells on porous materials. Microbiology, 73(6), 696–701.

    Article  CAS  Google Scholar 

  • Scheer, C., Grace, P. R., Rowlings, D. W., Kimber, S., & Van Zwieten, L. (2011). Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 345(1–2), 47–58.

    Article  CAS  Google Scholar 

  • Schimel, J. P., Wetterstedt, J. M., Holden, P. A., & Trumbore, S. E. (2011). Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biology & Biochemistry, 43(5), 1101–1103.

    Article  CAS  Google Scholar 

  • Singla, A., Dubey, S. K., Singh, A., & Inubushi, K. (2014a). Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agriculture, Ecosystems & Environment, 197(197), 278–287.

    Article  CAS  Google Scholar 

  • Singla, A., Iwasa, H., & Inubushi, K. (2014b). Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis). Biology and Fertility of Soils, 50(8), 1201–1209.

    Article  CAS  Google Scholar 

  • Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345–2347.

    Article  CAS  Google Scholar 

  • Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581.

    Article  CAS  Google Scholar 

  • Stark, J. M., & Firestone, M. K. (1995). Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61(1), 218–221.

    CAS  Google Scholar 

  • Trenberth, K. E., & Caron, J. M. (2001). Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14(16), 3433–3443.

    Article  Google Scholar 

  • Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A. & Chan, K. Y. (2009). Biochar and emissions of non-CO2 greenhouse gases from soil. In Biochar for environmental management: Science and technology (pp. 227–249). London: Earthscan.

  • Vance, E., Brookes, P., & Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19(6), 703–707.

    Article  CAS  Google Scholar 

  • Wang, B., Lehmann, J., Hanley, K., Hestrin, R., & Enders, A. (2015). Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, 138, 120–126.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, M., Xiong, Z., Liu, P., & Pan, G. (2011). Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils, 47(8), 887–896.

    Article  CAS  Google Scholar 

  • Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil—Concepts and mechanisms. Plant and Soil, 300(1), 9–20.

    Article  CAS  Google Scholar 

  • Xiang, S.-R., Doyle, A., Holden, P. A., & Schimel, J. P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry, 40(9), 2281–2289.

    Article  CAS  Google Scholar 

  • Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53(2), 181–188.

    Article  CAS  Google Scholar 

  • Zhang, A. F., Liu, Y. M., Pan, G. X., Hussain, Q., Li, L. Q., Zheng, J. W., et al. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science and Technology, 44(4), 1295–1301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was given by International Scientific and Technological Cooperation and Exchange Projects (2015DFG92450), 973 Program (No. 2013CB956702), the Chinese Academy of Sciences (S&T programs assisting Xinjiang), the International Scientific and Technological Cooperation Project of Guizhou Province (Grant Number G [2012]7050), “The Dawn of West China” Talent Training Program of the Chinese Academy of Sciences (Grant Number [2012]179) and the State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (Grant Number SKLEG2014912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqing Lee or Bing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Lee, X., Theng, B.K.G. et al. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil. Environ Geochem Health 39, 635–647 (2017). https://doi.org/10.1007/s10653-016-9838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9838-9

Keywords

Navigation