Skip to main content

Advertisement

Log in

Assessment of polycyclic aromatic hydrocarbons in indoor dust from varying categories of rooms in Changchun city, northeast China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Sixteen polycyclic aromatic hydrocarbons (PAHs) were isolated from indoor dust from various categories of rooms in Changchun city, northeast China, including dormitory, office, kitchen, and living rooms. PAH concentrations ranged from 33.9 to 196.4 μg g−1 and 21.8 to 329.6 μg g−1 during summer and winter, respectively, indicating that total PAH concentrations in indoor dust are much higher than those in other media from the urban environment, including soils and sediments. The percentage of five- to six-ring PAHs was high, indicating that PAHs found in indoor dust mainly originate from pyrolysis rather than a petrogenic source. Rooms were divided into three groups using cluster analysis on the basis of 16 PAH compositions, namely smoke-free homes, homes exposed to smoke and offices. Results showed that the source of PAHs in smoke-free residential homes is primarily the burning of fossil fuels. In addition to the burning of fossil fuels, biomass combustion and cooking contributed to PAHs in houses exposed to smoke (including kitchens). Motor vehicles are an additional source of PAHs in offices because of greater interactions with the outdoor environment. The results of health risk assessment showed that the cancer risk levels by dermal contact and ingestion are 104- to 105-fold higher than that by inhalation, suggesting that ingestion and dermal contact of carcinogenic PAHs in dust are more important exposure routes than inhalation of PAHs from air. Although the results showed high potential of PAH concentrations in indoor dust in Changchun for human health risk, caution should be taken to evaluate the risk of PAHs calculated by USEPA standard models with default parameters because habitation styles are different in various categories of rooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aryal, R., Baral, B., Vigneswaran, S., Naidu, R., & Loganathan, P. (2011). Seasonal influence on urban dust PAH profile and toxicity in Sydney, Australia. Water Science and Technology, 63, 2238–2243.

    Article  CAS  Google Scholar 

  • Barakat, A.O., Mostafa, A., Wade, T.L., Sweet, S.T., & EI Sayed, N.B.E. (2011). Spatial distribution and temporal trends of polycyclic aromatic hydrocarbons (PAHs) in sediments from Lake Maryut, Alexandria, Egypt. Water, Air, & Soil Pollution, 218, 63–80.

    Article  CAS  Google Scholar 

  • Benner, B. A., Gordon, G. E., & Wise, S. A. (1989). Mobile sources of atmospheric polycyclic aromatic hydrocarbons: A roadway tunnel study. Environmental Science and Technology, 23, 1269–1277.

    Article  CAS  Google Scholar 

  • Bi, X. H., Sheng, G. Y., Peng, P. A., Chen, Y. J., Zhang, Z. Q., & Fu, J. M. (2003). Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmospheric Environment, 37, 289–298.

    Article  CAS  Google Scholar 

  • Boonyatumanond, R., Wattayakorn, G., Togo, A., & Takada, H. (2006). Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Marine Pollution Bulletin, 52, 942–956.

    Article  CAS  Google Scholar 

  • Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123.

    Article  CAS  Google Scholar 

  • Chuang, J. C., Callahan, P. J., Lyu, C., & Wilson, N. K. (1999). Polycyclic aromatic hydrocarbon exposures of children in low-income families. Journal of Exposure Analysis and Environmental Epidemiology, 9, 85–98.

    Article  CAS  Google Scholar 

  • Essien, J. P., Eduok, S. I., & Olajire, A. A. (2011). Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River estuary mangrove ecosystem. Environmental Monitoring and Assessment, 176, 99–107.

    Article  CAS  Google Scholar 

  • Franz, T. P., & Eisenreich, S. J. (1998). Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environmental Science and Technology, 32, 1771–1778.

    Article  CAS  Google Scholar 

  • Golobocanin, D. D., Skrbic, B. D., & Miljevic, N. R. (2004). Principal component analysis for soil contamination with PAHs. Chemometrics and Intelligent Laboratory Systems, 72, 219–223.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30, 825–832.

    Article  CAS  Google Scholar 

  • Hawley, J. K. (1985). Assessment of health risk from exposure to contaminated soil. Risk Analysis, 5, 289–302.

    Article  CAS  Google Scholar 

  • Hoh, E., Hunt, R. N., Quintana, P. J. E., Zakarian, J. M., Chatfield, D. A., Wittry, B. C., et al. (2012). Environmental tobacco smoke as a source of polycyclic aromatic hydrocarbons in settled household dust. Environmental Science and Technology, 46, 4174–4183.

    Article  CAS  Google Scholar 

  • Hong, Y.W., Yu, S., Yu, G.B., Liu, Y., Li, G.L., & Wang, M. (2012). Impacts of urbanization on surface sediment quality: evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China. Environmental Science and Pollution Research, 19, 1352–1363.

    Article  CAS  Google Scholar 

  • Hu, N. J., Shi, X. F., Huang, P., Mao, J. A., Liu, J. H., Liu, Y., & Ma, D. Y. (2011). Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Liaodong Bay, Bohai Sea, China. Environmental Science and Pollution Research, 18, 163–172.

    Article  CAS  Google Scholar 

  • Hussain, K., & Hoque, R.R. (2015). Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere,  119, 794–802.

    Article  CAS  Google Scholar 

  • Ingalls, A. E., Liu, Z. F., & Lee, C. (2006). Seasonal trends in the pigment and amino acid compositions of sinking particles in biogenic CaCO3 and SiO2 dominated regions of the Pacific sector of the Southern Ocean along 170 degrees W. Deep-Sea Research Part I: Oceanographic Research Papers, 53, 836–859.

    Article  CAS  Google Scholar 

  • Kang, Y. A., Cheung, K. C., & Wong, M. H. (2010). Polycyclic aromatic hydrocarbons (PAHs) in different indoor dusts and their potential cytotoxicity based on two human cell lines. Environment International, 36, 542–547.

    Article  CAS  Google Scholar 

  • Khedidji, S., Ladji, R., & Yassaa, N. (2013). A wintertime study of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a big student residence in Algiers, Algeria. Environment Science and Pollution Research, 20, 4906–4919.

    Article  CAS  Google Scholar 

  • Kliucininkas, L., Martuzevicius, D., Krugly, E., Prasauskas, T., Kauneliene, V., Molnar, P., & Strandberg, B. (2011). Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas, Lithuania. Journal of Environmental Monitoring, 13, 182–191.

    Article  CAS  Google Scholar 

  • Li, B. H., Feng, C. H., Li, X., Chen, Y. X., Niu, J. F., & Shen, Z. Y. (2012). Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Marine Pollution Bulletin, 64, 636–643.

    Article  CAS  Google Scholar 

  • Li, G. Y., Sun, H., Zhang, Z., An, T., & Hu, J. (2013). Distribution profile, health risk and elimination of model atmospheric SVOCs associated with a typical municipal garbage compressing station in Guangzhou, South China. Atmospheric Environment, 76, 173–180.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Chemosphere, 355, 145–155.

    CAS  Google Scholar 

  • Liao, C. M., & Chiang, K. C. (2006). Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere, 63, 1610–1619.

    Article  CAS  Google Scholar 

  • Lin, Y. Z., Cao, C. H., Yin, J., & Chao, W. (2011). Investigation of endocrine disrupting chemicals in a sewage treatment plant of Changchun in frozen period. Environment Materials and Environment Management, 281, 309–312.

    CAS  Google Scholar 

  • Liu, Q., Wang, Y., Liu, J. S., Wang, Q. Y., & Zou, M. Y. (2015). Grain-size distribution and heavy metal contamination of road dusts in urban parks and squares in Changchun, China. Environmental Geochemistry and Health, 37, 71–82.

    Article  Google Scholar 

  • Lorenzi, D., Entwistle, J. A., Cave, M., & Dean, J. R. (2011). Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere, 83, 970–977.

    Article  CAS  Google Scholar 

  • Ma, W. L., Sun, D. Z., Shen, W. G., Yang, M., Qi, H., Liu, L. Y., et al. (2011). Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic Games. Environmental Pollution, 159, 1794–1801.

    Article  CAS  Google Scholar 

  • MacKay, D. (2011). Multimedia environmental models: The fugacity approach. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Maertens, R. M., Bailey, J., & White, P. A. (2004). The mutagenic hazards of settled house dust: A review. Mutation Research, 567, 401–425.

    Article  CAS  Google Scholar 

  • Maertens, R. M., Yang, X. F., Zhu, J. P., Gagne, R. W., Douglas, G. R., & White, P. A. (2008). Mutagenic and carcinogenic hazards of settled house dust I: Polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environmental Science and Technology, 42, 1747–1753.

    Article  CAS  Google Scholar 

  • Mannino, M. R., & Orecchio, S. (2008). Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC-MS analysis, distribution and sources. Atmospheric Environment, 42, 1801–1817.

    Article  CAS  Google Scholar 

  • Mastrangelo, G., Fadda, E., & Marzia, V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environmental Health Perspectives, 104, 1166–1170.

    Article  CAS  Google Scholar 

  • Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, Mexico. Atmospheric Environment, 41, 276–288.

    Article  CAS  Google Scholar 

  • Molhave, L., Schneider, T., Kjaergaard, S. K., Larsen, L., Norn, S., & Jorgensen, O. (2000). House dust in seven Danish offices. Atmospheric Environment, 34, 4767–4779.

    Article  CAS  Google Scholar 

  • Morawska, L., & Salthammer, T. (Eds.). (2003). Indoor environment: Airborne particles and settled dust. Weinlaeim: Wiley-VCH.

    Google Scholar 

  • Naspinski, C., Lingenfelter, R., Cizmas, L., Naufal, Z., He, L. Y., Islamzadeh, A., et al. (2008). A comparison of concentrations of polycyclic aromatic compounds detected in dust samples from various regions of the world. Environment International, 34, 988–993.

    Article  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • Ortiz, R., Vega, S., Gutiérrez, R., Gibson, R., Schettino, B., & Ramirez, M.L. (2012). Presence of polycyclic aromatic hydrocarbons (PAHs) in top soils from rural terrains in Mexico City. Bulletin of Environmental Contamination and Toxicology, 88, 428–432.

    Article  CAS  Google Scholar 

  • Paustenbach, D. J., Finley, B. L., & Long, T. F. (1997). The critical role of house dust in understanding the hazards posed by contaminated soils. International Journal of Toxicology, 16, 339–362.

    Article  CAS  Google Scholar 

  • Peng, C., Chen, W. P., Liao, X. L., Wang, M. E., Ouyang, Z. Y., Jiao, W. T., & Bai, Y. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159, 802–808.

    Article  CAS  Google Scholar 

  • Reisen, F., & Arey, J. (2005). Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environmental Science and Technology, 39, 64–73.

    Article  CAS  Google Scholar 

  • Ren, Y., Cheng, T. T., & Chen, J. M. (2006). Polycyclic aromatic hydrocarbons in dust from computers: one possible indoor source of human exposure. Atmospheric Environment, 40, 6956–6965.

    Article  CAS  Google Scholar 

  • Riechelmann, H., Deutschle, T., Grabow, A., Heinzow, B., Butte, W., & Reiter, R. (2007). Differential response of mono mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environmental Health Perspectives, 115, 1325–1332.

    Article  CAS  Google Scholar 

  • Robinson, J., & Nelson, W. C. (1995). National human activity pattern survey data base. Research Triangle Park, NC: United States Environmental Protection Agency.

    Google Scholar 

  • Schulte, P. A., & Hauser, J. E. (2012). The use of biomarkers in occupational health research, practice, and policy. Toxicology Letters, 213, 91–99.

    Article  CAS  Google Scholar 

  • Shao, X.L., Xu, Y.P., Zhang, W., & Lv, J.G. (2015). Polycyclic aromatic hydrocarbons (PAHs) pollution in agricultural soil in Tianjin, China. Soil and Sediment Contamination, 24, 343–351.

    Article  CAS  Google Scholar 

  • Shi, S.X., Huang, Y.R., Zhou, L., Yang, W.L., Dong, L., Zhang, L.F., & Zhang, X.L. (2013). A preliminary investigation of BDE-209, OCPs, and PAHs in urban road dust from Yangtze River Delta, China. Environmental Monitoring and Assessment, 185, 4887–4896.

    CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079.

    Article  CAS  Google Scholar 

  • Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.

    Article  CAS  Google Scholar 

  • Vardar, N., & Noll, K. E. (2003). Atmospheric PAHs concentrations in fine and coarse particles. Environmental Monitoring and Assessment, 87, 81–92.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O. W., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Wang, Z. C., Liu, M., & Yang, Y. (2015). Characterization and sources analysis of polycyclic aromatic hydrocarbons in surface sediments in the Yangtze River Estuary. Environmental Earth Sciences, 73, 2453–2462.

    Article  CAS  Google Scholar 

  • Wang, Z. C., Liu, Z. F., Yang, Y., Li, T., & Liu, M. (2012). Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere, 89, 221–227.

    Article  CAS  Google Scholar 

  • Wang, W., Wu, F. Y., Zheng, J. S., & Wong, M. H. (2013). Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. Journal of Hazardous Materials, 263, 627–637.

    Article  CAS  Google Scholar 

  • Wilson, N. K., Chuang, J. C., Lyu, C., Menton, R., & Morgan, M. K. (2003). Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. Journal of Exposure Analysis and Environmental Epidemiology, 13, 187–202.

    Article  CAS  Google Scholar 

  • Wu, S. P., Tao, S., Xu, F. L., Dawson, R., Lan, T., Li, B. G., & Cao, J. (2005). Polycyclic aromatic hydrocarbons in dustfall in Tianjin. Science of the Total Environment, 345, 115–126.

    Article  CAS  Google Scholar 

  • Yang, Q., Chen, H.G., & Li, B.Z. (2015). Polycyclic aromatic hydrocarbons (PAHs) in indoor dusts of Guizhou, southwest of China: status, sources and potential human health risk.PLOS ONE, 10(2), E0118141.

    Article  Google Scholar 

  • Yang, Y., & Baumann, W. (1995). Seasonal and areal variations of polycyclic aromatic hydrocarbons concentrations in street dust determined by supercritical fluid extraction and gas chromatography–mass spectrometry. Analyst, 120, 243–248.

    Article  CAS  Google Scholar 

  • Yunker, M. B., & Macdonald, R. W. (1995). Composition and origins of polycyclic aromatic-hydrocarbons in the Mackenzie River and on the Beaufort Sea shelf. Arctic, 48, 118–129.

    Article  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zaghden, H., Kallel, M., Elleuch, B., Oudot, J., & Saliot, A. (2007). Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Marine Chemistry, 105, 70–89.

    Article  CAS  Google Scholar 

  • Zhang, D. L., An, T. C., Qiao, M., Loganathan, B. G., Zeng, X. Y., Sheng, G. Y., & Fu, J. M. (2011). Source identification and health risk of polycyclic aromatic hydrocarbons associated with electronic dismantling in Guiyu town, South China. Journal of Hazardous Materials, 192, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, T., Yang, W.L., Chen, S.J., Shi, D.L., Zhao, H., Ding, Y., Huang, Y.R., Huang, N., Ren, Y., & Mai, B.X. (2014). Occurrence, sources, and ecological risks of PBDEs, PCBs, OCPs, and PAHs in surface sediments of the Yangtze River Delta city cluster, China. Environmental Monitoring and Assessment,  186, 5285–5295.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank members in my office for collecting samples. We are grateful for the language help from S. Liu. This research received Grants support from the National Natural Science Foundation of China (Grant No# 41401544) and from Fundamental Research Funds for the Central Universities (Grant No# 14QNJJ023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zucheng Wang.

Appendix

Appendix

The ILCR was calculated using the followed equations:

$$\begin{aligned} & {\text{ILCRS}}_{\text{Ingestion}} = \frac{{{\text{CS}} \times \left( {{\text{CSF}}_{\text{Ingestion}} \times \sqrt[3]{{\frac{\text{BW}}{70}}}} \right) \times {\text{IR}}_{\text{Ingestion}} \times {\text{EF}} \times {\text{ED}}}}{{{\text{BW}} \times {\text{AT}} \times 10^{6} }} \\ & {\text{ILCRS}}_{\text{Dermal}} = \frac{{{\text{CS}} \times \left( {{\text{CSF}}_{\text{Dermal}} \times \sqrt[3]{{\frac{\text{BW}}{70}}}} \right) \times {\text{SA}} \times {\text{AF}} \times {\text{ABS}} \times {\text{EF}} \times {\text{ED}}}}{{{\text{BW}} \times {\text{AT}} \times 10^{6} }} \\ & {\text{ILCRS}}_{\text{Inhalation}} = \frac{{{\text{CS}} \times \left( {{\text{CSF}}_{\text{Inhalation}} \times \sqrt[3]{{\frac{\text{BW}}{70}}}} \right) \times {\text{IR}}_{\text{Inhalation}} \times {\text{EF}} \times {\text{ED}}}}{{{\text{BW}} \times {\text{AT}} \times {\text{PEF}}}} \\ \end{aligned}$$

where CS is the sum of equal BaP concentrations based on toxic equivalents of BaP by the toxic equivalency factor (Nisbet and LaGoy 1992), CSF is carcinogenic slope factor (mg kg−1 d−1)−1, BW is body weight (kg), AT is the average life span (years), EF is the exposure frequency (d year−1), ED is the exposure duration (years), IRInhalation and IRIngestion are the inhalation rate (m3 d−1) and soil intake rate (mg d−1), respectively, SA is the dermal surface exposure (cm2), AF is the dermal adherence factor (mg cm−2 h−1), ABS is the dermal adsorption fraction, and PEF is the particle emission factor (m3 kg−1). CSFingestion, CSFDermal, and CSFInhalation of BaP were addressed as 7.3, 25, and 3.85 (mg kg−1 d−1)−1, respectively, as determined by the cancer-causing ability of BaP (Peng et al. 2011). Other parameters referred to in the model for children (1–6 years old) and adults (7–31 years old) were based on the Risk Assessment Guidance of the USEPA and related publications, shown in Table 3.

Table 3 Parameters used in the incremental lifetime cancer risk assessment (Wang et al. 2011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, S., Nie, J. et al. Assessment of polycyclic aromatic hydrocarbons in indoor dust from varying categories of rooms in Changchun city, northeast China. Environ Geochem Health 39, 15–27 (2017). https://doi.org/10.1007/s10653-016-9802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9802-8

Keywords

Navigation