Skip to main content

Advertisement

Log in

Active and legacy mining in an arid urban environment: challenges and perspectives for Copiapó, Northern Chile

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter. Despite the public concern generated by the mining-related pollution, no geochemical information is currently available for Copiapó, particularly for metal concentration in environmental solid phases. A geochemical screening of soils (n = 42), street dusts (n = 71) and tailings (n = 68) was conducted in November 2014 and April 2015. Organic matter, pH and elemental composition measurements were taken. Notably, copper in soils (60–2120 mg/kg) and street dusts (110–10,200 mg/kg) consistently exceeded international guidelines for residential and industrial use, while a lower proportion of samples exceeded international guidelines for arsenic, zinc and lead. Metal enrichment occurred in residential, industrial and agricultural areas near tailings and the copper smelter. This first screening of metal contamination sets the basis for future risk assessments toward defining knowledge-based policies and urban planning. Challenges include developing: (1) adequate intervention guideline values; (2) appropriate geochemical background levels for key metals; (3) urban planning that considers contaminated areas; (4) cost-effective control strategies for abandoned tailings in water-scarce areas; and (5) scenarios and technologies for tailings reprocessing. Assessing urban geochemical risks is a critical endeavor for areas where extreme events triggered by climate change are likely, as the mud flooding that impacted Copiapó in late March 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Khashman, O. A. (2007). Determination of metal accumulation in the deposited street dusts in Amman, Jordan. Environmental Geochemistry and Health, 29, 1–10.

    Article  CAS  Google Scholar 

  • Al-Rajahi, A., Seaward, M. R., & Edwardst, H. G. (1996). Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmospheric Environment, 30, 145–153.

    Article  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123, 95–105.

    Article  CAS  Google Scholar 

  • Bes, C. M., Pardo, T., Bernal, M. P., & Clemente, R. (2014). Assessment of the environmental risks associated with two mine tailing soils from the La Union-Cartagena (Spain) mining district. Journal of Geochemical Exploration, 147, 98–106.

    Article  CAS  Google Scholar 

  • Bloemen, M. L., Markert, B., & Lieth, H. (1995). The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use. Science of the Total Environment, 166, 137–148.

    Article  CAS  Google Scholar 

  • Boyd, H. B., Pedersen, F., Cohr, K. H., Damborg, A., Jakobsen, B. M., Kristensen, P., & Samsøe-Petersen, L. (1999). Exposure scenarios and guidance values for urban soil pollutants. Regulatory Toxicology and Pharmacology, 30, 197–208.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (2003). Canadian environmental quality guidelines. Summary table, Updated December 2003.

  • Companhia de Tecnologia de Saneamento Ambiental. (2005). DECISÃO DE DIRETORIA No 195-2005-E. Sao Paulo: CETESB.

    Google Scholar 

  • Cordova, S., Neaman, A., Gonzalez, I., Ginocchio, R., & Fine, P. (2011). The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils. Geoderma, 166(1), 135–144.

    Article  CAS  Google Scholar 

  • Department of Economic and Social Affairs United. (2014). World urbanization prospects, the 2014 revision: Highlights. New York: United Nations.

    Google Scholar 

  • Glennon, M. M., Harris, P., Ottesen, R. T., Scanlon, R. P., & O’Connor, P. J. (2014). The Dublin SURGE Project: Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environmental Geochemistry and Health, 36, 235–254.

    Article  CAS  Google Scholar 

  • Gomez-Alvarez, A., Valenzuela-Garcia, J. L., Meza-Figueroa, D., de la O-Villanueva, M., Ramirez-Hernandez, J., Almendariz-Tapia, J., et al. (2011). Impact of mining activities on sediments in a semi-arid environment: San Pedro River, Sonora, Mexico. Applied Geochemistry, 26(12), 2101–2112.

    Article  CAS  Google Scholar 

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.

    Article  CAS  Google Scholar 

  • Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non- industrial areas of Britain. Applied Geochemistry, 11, 363–370.

    Article  CAS  Google Scholar 

  • Li, X. D., Lee, S. L., Wong, S. C., Shi, W. Z., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Massas, I., Ehaliostis, C., Kalivas, D., & Panagopoulou, G. (2010). Concentrations and availability indicators of soil heavy metals; the case of children playgrounds in the city of Athens (Greece). Water, Air, and Soil pollution, 212, 51–63.

    Article  CAS  Google Scholar 

  • McKay, C. P. (2002). Two dry for life: The Atacama Desert and Mars. Ad Astra, NASA Ames Research Center. http://spacewardbound.nasa.gov/docs/McKay2002AtacamaAdAstra1.pdf.

  • Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: Soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. Environmental Research (Section A), 81, 117–129.

    Article  CAS  Google Scholar 

  • Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives, 106(Suppl. 1), 217–229.

    Article  CAS  Google Scholar 

  • Moller, A., Muller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damaskus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis, part 3: Chemical methods (pp. 961–1010). Madison, WI: Soil Science Society of America Inc., American Society of Agronomy Inc.

    Google Scholar 

  • Nkosi, V., Wichmann, J., & Voyi, K. (2015). Chronic respiratory disease among the elderly in South Africa: Any association with proximity to mine dumps? Environmental Health, 14(33), 1–8.

    Google Scholar 

  • Norra, S., Lanka-Panditha, M., Kramar, U., & Stuben, D. (2006). Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany. Applied Geochemistry, 21, 2064–2081.

    Article  CAS  Google Scholar 

  • Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. Mineralogical, organic and inorganic methods. Berlin: Springer.

    Google Scholar 

  • Park, J. H., Hodge, V., Gerstenberger, S., & Stave, K. (2014). Mobilization of toxic elements from an abandoned manganese mine in the arid metropolitan Las Vegas (NV, USA) area. Applied Sciences (Basel), 4(2), 240–254.

    Article  Google Scholar 

  • Sackett, D., & Martin, K. (1998). EPA method 6200 and field portable X-ray fluorescence. Bedford, MA: US EPA.

    Google Scholar 

  • Sánchez-Martin, M. J., Sánchez-Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities in Spain: Influence of traffic intensity. Bulletin of Environment Contamination and Toxicology, 64, 250–257.

    Article  Google Scholar 

  • SEREMI MINSAL [Secretaría Regional Ministerio de Salud]. (2011). Reporte anual actividades 2011. Plan de Salud de polimetales SEREMI de salud de Arica y Parinacota, Chile.

  • SERNAGEOMIN. (2015). Catastro nacional de depósitos de relave, depósitos activos y no activos 2015. Gobierno de Chile: Departamento de depósito de relaves, Servicio Nacional de Geología y Minería.

    Google Scholar 

  • Sobrino-Figueroa, A. S., Becerra-Rueda, O. F., Magallanes-Ordonez, V. R., Sanchez-Gonzalez, A., & Marmolejo-Rodriguez, A. J. (2015). Toxicity in semiarid sediments influenced by tailings of an abandoned gold mine. Environmental Monitoring and Assessment, 187(1), 1–8.

    Article  CAS  Google Scholar 

  • Soublette, N., Heyer, J., & Cortés, I. (2011). INFORME FINAL. Investigación preliminar y confirmatoria de suelos con potencial presencia de contaminantes (SPPC). Comunas de Copiapó y Tierra Amarilla, Chile. 580 pp.

  • US EPA. (2002). Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. Washington, DC: Office of Emergency and Remedial Response, United States Environmental Protection Agency.

    Google Scholar 

  • US EPA. (2015). Regional screening level (RSL) summary table. Risk assessment, United States Environmental Protection Agency.

  • Varrica, D., Tamburo, E., Milia, N., Vallascas, E., Cortimiglia, V., De Giudici, G., et al. (2014). Metals and metalloids in hair samples of children living near the abandoned mine sites of Sulcis-Inglesiente (Sardina, Italy). Environmental Research, 134, 366–374.

    Article  CAS  Google Scholar 

  • Wang, X., Qin, Y., & Chen, Y. (2006). Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50, 1061–1066.

    Article  CAS  Google Scholar 

  • Wong, C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CEDEUS Conicyt Proyecto Fondap 15110020 and Proyecto Fondecyt 1130936 for financial support. We acknowledge logistics support from the Chilean Ministry of the Environment, the Municipality of Copiapó and Aguas Chañar. Our thanks also to Fernanda Carrasco and Felipe Medina from the Water Quality Laboratory, Pontificia Universidad Católica de Chile, for their help with sampling and samples analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Pastén.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carkovic, A.B., Calcagni, M.S., Vega, A.S. et al. Active and legacy mining in an arid urban environment: challenges and perspectives for Copiapó, Northern Chile. Environ Geochem Health 38, 1001–1014 (2016). https://doi.org/10.1007/s10653-016-9793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9793-5

Keywords

Navigation