Skip to main content
Log in

Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l−1) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3) 2−2 ] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AERB, Dae (Atomic Energy Regulatory Board, Department of Atomic Energy). (2004). Drinking water specifications in India. Mumbai, India: Atomic Energy Regulatory Board.

    Google Scholar 

  • Ali, M., Shariff, A. A., Qamar, N. A., & Laghari, A. (2013). An appraisal of uranium source potential of granites, associated felsic rocks, kaolin and calcretes of Nagar Parkar area, Tharparkar Pakistan. Journal of Himalayan Earth Sciences, 46(1), 31–39.

    Google Scholar 

  • APHA. (1992). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: APHA.

    Google Scholar 

  • Braum, I. (2006). Pan-African granitic magmatism in the Kerala Khondalite belt, Southern India. Journal of Asian Earth Sciences, 26, 36–45.

    Google Scholar 

  • Bucur, C., Olteanu, M., & Pavelescu, M. (2006). Radionuclides diffusion in geological media. Romania Journal of Physics, 51(3–4), 469–478.

    CAS  Google Scholar 

  • Burns, P., & Finch, R. (1999). Uranium, mineralogy, geochemistry and the environment, reviews in mineralogy. Mineralogical society of America, 38, 1–679.

    Google Scholar 

  • CGWB. (2007). District groundwater brochure. Madurai, India: Central Groundwater Board.

    Google Scholar 

  • Chau, N. D., & Michalec, B. (2009). Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. Journal of radio analytical and nuclear chemistry., 279(1), 121–129.

    Article  CAS  Google Scholar 

  • Chidambaram, S., Prasanna, M. V., Karmegam, U., Singaraja, C., Pethaperumal, S., Manivannan, R., et al. (2011). Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India. Frontiers in earth sciences, 5(2), 197–206.

    Article  CAS  Google Scholar 

  • Chidambaram, S., Senthilkumar, G., Prasanna, M. V., John Peter, A., Ramanathan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater frpm different depths in a coastal aquifer: Annamalai nagar, Tamilnadu, India. Environmental Geology, 57, 59–73.

    Article  CAS  Google Scholar 

  • Chidambaram, S., Vijayakumar, V., Srinivasamoorthy, K., Anandhan, P., Prasanna, M. V., & Vasudeven, S. (2007). A study on variation in ionic composition of aqueous system in different lithounits around Perambalur Region, Tamil nadu. Geological Society of India, 70, 1061–1069.

    CAS  Google Scholar 

  • Choppin, G. R. (2007). Actinide speciation in the environment. Journal of Radioanalytical and Nuclear Chemistry, 273(3), 695–703.

    Article  CAS  Google Scholar 

  • Ciavatta, L., Ferri, D., Grenthe, I., & Salvatore, F. (1981). The first acidification step of the tris (carbonato) dioxourantantate (VI) ion, UO2(CO3) 4−3 . Journal of inorganic chemistry, 20, 463–467.

    Article  CAS  Google Scholar 

  • De Camargo, I. M. C., & Mazzilli, B. (1996). Determination of uranium and thorium isotopes in mineral spring waters. Journal of radio analytical Nuclear Chemistry, 212(4), 251–258.

    Article  Google Scholar 

  • Dillon, M. E., Carter, G. L., Arora, R., & Kahn, B. (1991). Radon concentrations in groundwater of Georgia piedmont. Health Physics, 60, 229–236.

    Article  CAS  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters (2nd ed.). New York: Prentice-Hall.

    Google Scholar 

  • Duff, M. C., & Amrhein, C. (1996). Uranium(VI) adsorption on Goethite and soil in carbonate solutions. Soil Science Society of America Journal, 60, 1393–1400.

    Article  CAS  Google Scholar 

  • Freeze, A. R., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of hazardous material, 163, 475–510.

    Article  CAS  Google Scholar 

  • GSI (Geological Survey of India). (1995). Geological and mineral map of Kerala and Tamil Nadu.

  • Gueniot, B., Munier-Lamy, C., & Berthelin, J. (1988). Geochemical behavior of uranium in soils, part II. Distribution of uranium in hydromorphic soils and soil sequences. Applications for surficial prospecting. Journal of Geochemical Exploration, 31(1), 39–55.

    Article  CAS  Google Scholar 

  • Ioannides, K. G., Mertzimekis, T. J., Parachristodoulou, C. A., & Tzialla, C. E. (1997). Measurements of natural radioactivity in phosphate fertilizers. The Science of the Total Environment, 196, 63–67.

    Article  CAS  Google Scholar 

  • Ioannidou, A., Samaropoulos, I., Efstathiou, M., & Pashalidis, I. (2011). Uranium in ground water samples of Northern Greece. Journal of radio analytical Nuclear Chemistry, 289, 551–555.

    Article  CAS  Google Scholar 

  • Jurgens, B. C., Fram, M. S., Belitz, K., Burow, K. R., & Landon, M. K. (2009). Effects of groundwater development on Uranium: Central valley, California, USA. Groundwater, 48(6), 913–928.

    Article  Google Scholar 

  • Killiari, T., & Pashalidis, I. (2010). Simplified alpha-spectroscopic analysis of uranium in natural waters after its separation by cation-exchange. Radiation Measurements, 45(8), 966–968.

    Article  Google Scholar 

  • Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547–569.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Lowry, J. D., Hoxie, D. C., & Moreau, E. (1987). Extreme levels of 222Rn and U in private water supply. In G. Barbara (Ed.), Radon radium and other radionuclides in airborne contamination. Proceedings of a conference, National water well association (pp. 363–376). Ann Arbor, MI: Lewis Publishers.

  • Michel, J. (1991). Relationship of radium and radon with geological formations. In C. R. Cothern, P. A. Rebers (Eds.), Chapter 7 in Radon, radium and uranium in drinking water (pp. 83–96). Boca Raton, FL: Lewis Publishers.

  • Murphy, W. M., & Shock, E. L. (1999). Environmental aqueous geochemistry of actinides. In P. C. Burns, R. Finch (Eds.), Uranium: Mineralogy, geochemistry and the environment. Reviews in Mineralogy (Vol. 38, pp. 221–254).

  • Ortega, X., Valles, I., & Serrano, I. (1996). Natural radioactivity in drinking water in Catalonia (Spain). Environment International, 22(1), 347–354.

    Article  Google Scholar 

  • Otwoma, D., & Mustapha, A. O. (1998). Measurement of 222Rn concentration in Kenyan groundwater. Health Physics, 74(1), 91–95.

    Article  CAS  Google Scholar 

  • Pandey, U. K., & Krishnamurthy, P. (1995). Uranium and thorium abundances in some graphite-bearing Precambrian rocks of India and implications. Current Science, 68(8), 826–828.

    CAS  Google Scholar 

  • Porcelli, D., & Swarzenski, P. W. (2003). The behavior of U- and Th-series nuclides in groundwater in Uranium-Series Geochemistry. Reviews in Mineralogy and Geochemistry, 52(1), 317–361.

    Article  CAS  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Shahul Hameed, A., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 15(4), 145–152.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Vasu, K., Shahul Hameed, A., Unnikrishna Warrier, C., Srinivasamoorthy, K., et al. (2008). Identification of the geochemical processes in coastal groundwater using hydrogeochemical and isotopic data: A case study of the Gadilam river basin in southern India. Indian Journal of Marine Sciences, 37(2), 200–206.

    CAS  Google Scholar 

  • Roselli, C., Desideri, D., & Meli, M. A. (2009). Radiological characterization of phosphate fertilisers: Comparison between alpha and gamma spectroscopy. Microchemical Journal, 91(2), 181–186.

    Article  CAS  Google Scholar 

  • Siegel, M. D., & Bryan, C. R. (2004). Environmental geochemistry of radioactive contamination. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 205–262). Amsterdam: Elsevier.

  • Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis. Oxford: Blackwell.

    Google Scholar 

  • Taffet, M., Madrid, V., Carlsen, T., Demir, Z., Valett, J., Dresen, M., Daily, W., Coleman, S., Dibley, V., & Ferry, L. (2004). Remedial investigation/feasibility study for the Pit 7 complex at Lawrence Livermore National Laboratory Site 300, Lawrence Livermore National Laboratory, Livermore, CA (UCRL-AR-202492).

  • Thivya, C. (2013). Study on Uranium in groundwater of Madurai district, Tamilnadu. Unpublished Ph.D. thesis, Department of Earth Sciences, Annamalai University.

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., Anandan, P., & Jainab, I. (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environmental development and sustainability, 15(5), 1365–1387.

    Article  Google Scholar 

  • Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Nepolian, M., & Sundarrajan, M. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai district South India. Arabian Journal of Geosciences,. doi:10.1007/s12517-013-1065-4.

    Google Scholar 

  • Thivya, C., Chidambaram, S., Tirumalesh, K., Prasanna, M. V., Thilagavathi, R., & Nepolian, M. (2014). Occurrence of the radionuclides in groundwater of crystalline hard rock regions of central Tamil Nadu, India. Journal of Radio Analytical and Nuclear Chemistry, 302, 1349–1355.

    Article  CAS  Google Scholar 

  • Thomas, M. A. A. (1987). Connecticut radon study using limited water sampling and a statewide ground based gamma survey to help guide an indoor air testing program. A progress report. In G. Barbara (Ed.), Radon, radium and other radioactivity in airborne contamination. Proceedings of a conference, National water well association (pp. 347–362). Ann Arbor, MI: Lewis Publishers.

  • Trusdell, A. H., & Jones, B. F. (1973). WATEQ: A computer program for calculating chemical equilibria of natural waters. Journal of Research US Geological Survey, 2(2), 233–248.

    Google Scholar 

  • WHO (World Health Organization). (2012). Guidelines for drinking-water quality (3rd edn, Vol. 1, Recommendations). Geneva. ISBN: 92 4 154696.

  • Zou, W., Bai, H., Zhao, L., Li, K., & Han, R. (2011). Characterization and properties of zeolite as adsorbent for removal of uranium (VI) from solution in fixed bed column. Journal of Radio Analytical and Nuclear Chemistry, 288, 779–788. doi:10.1007/s10967-011-1026-x.

    Article  CAS  Google Scholar 

  • Zachara J. M., Brown, C., Christensen, J., Davis, J. A., Dresel, E., Liu, C., Kelly, S., Mckinley, J., Serne, J., & Um, W. (2007). A site-wide perspective on Uranium geochemistry at the Hanford site. US Department of Energy Publications. Paper 286. http://digitalcommons.unl.edu/usdoepub/286.

  • Zelensky, A. V., Buzinny, M. G., & Los, I. P. (1993). Measurements of 226Ra and 222Rn and uranium in Ukrainian groundwater using ultra-low-level liquid scintillation counting. In J.E. Noakes, F. Schoenhofer, H.A. Polach (Eds.), Liquid scintillation spectrometry, 1992. Radiocarbon (pp. 405–411).

Download references

Acknowledgments

The authors express their sincere thanks to University Grants Commission (UGC), India, for providing the necessary financial support to this research project with wide reference to UGC Letter No. F: 39-143/2010 (SR) dated December 27, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thivya, C., Chidambaram, S., Keesari, T. et al. Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India). Environ Geochem Health 38, 497–509 (2016). https://doi.org/10.1007/s10653-015-9735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9735-7

Keywords

Navigation