Skip to main content
Log in

Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Agbenin, J. O., & Welp, G. (2012). Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradient in thin films (DGT) and ion exchange resin membranes. Environmental Monitoring and Assessment, 184, 2275–2284.

    Article  CAS  Google Scholar 

  • Alexander, M. (2000). Aging, bioavailability, and overestimation of risks from environmental pollutants. Environmental Science and Technology, 34, 4259–4265.

    Article  CAS  Google Scholar 

  • Alexander, P. D., Alloway, B. J., & Dourado, A. M. (2006). Genotypic variation in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 144, 736–745.

    Article  CAS  Google Scholar 

  • Allen, H. E., Lin, Y., & Di Toro, D. M. (2008). Ecotoxicity Ni in soil. Mineralogical Magazine, 72, 367–371.

    Article  CAS  Google Scholar 

  • Allison, J. D., Brown, D. S., & Novo-Gradec, K. J. (1991). MINTEQA2/PRODEFA2. A geochemical assessment model for environmental systems. Version 3.0. User’s manual. Washington, DC: US EPA.

    Google Scholar 

  • Alloway, B. J., & Ayres, D. C. (1997). Chemical principles of environmental pollution (2nd ed.). London: Blackie Academic and Professional.

    Google Scholar 

  • Antunes, P. M. C., & Kreager, N. J. (2009). Development of the terrestrial biotic ligand model for predicting nickel toxicity to barley (hordeum vulgare): Ion effects at low pH. Environmental Toxicology and Chemistry, 28, 1704–1710.

    Article  CAS  Google Scholar 

  • Aryal, R. K., Furumai, H., Nakajima, F., & Hossain, M. A. (2007). Vertical distribution and speciation of heavy metals in stormwater infiltration facilities: Possible heavy metals release to groundwater. Water Practice and Technology. http://www.iwaponline.com/wpt/002/0052/0020052.pdf. Accessed 24 Nov 2014

  • Baes, C. F, Jr., & Mesmer, R. E. (1976). The hydrolysis of cations. New York: Wiley-Interscience.

    Google Scholar 

  • Benedetti, M. F., Van Riemsdijk, W. H., Koopal, L. K., Kinniburgh, D. G., Gooddy, D. C., & Milne, C. J. (1996). Metal ion binding by natural organic matter: From the model to the field. Geochimica et Cosmochimica Acta, 60, 2503–2513.

    Article  CAS  Google Scholar 

  • Benton, J, Jr, Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis, and interpretation guide. Athens: Micro-Macro Publishing.

    Google Scholar 

  • Birke, C., & Werner, W. (1991). Eignung chemischer Extraktionsverfahren zur Prognose der Schwermetallgehalte in Pflanzen. Berichte aus der Oekologischen Forschung, 6, 224–288.

    CAS  Google Scholar 

  • Bloomfield, C., Kelso, W. I., & Pruder, G. (1976). Reactions between metals and humified organic matter. Journal of Soil Science, 27, 16–31.

    Article  CAS  Google Scholar 

  • Blume, H.-P., & Bruemmer, G. (1991). Prediction of heavy metal behavior in soil by means of simple field tests. Ecotoxicology and Environmental Safety, 22, 164–174.

    Article  CAS  Google Scholar 

  • Blume, H.-P., Bruemmer, G. W., Horn, R., Kandeler, E., Koegel-Knabner, I., Kretzschmar, R., et al. (2010). Scheffer/Schachtschabel—Lehrbuch der Bodenkunde (16th ed.). Heidelberg, Berlin: Spektrum Akademischer Verlag.

    Book  Google Scholar 

  • BMUB (German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). (1999). Federal soil protection and contaminated sites ordinance (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV). Last amended by article 5 paragraph 31 on February 24 2012. Berlin, Germany.

  • Bolton, K. A., & Thorose, E. (1997). The effect of soil organic matter on cadmium bioavailability in barley. In Proceedings of the 4th international conference on the biogeochemistry of trace elements (pp. 103–104). June 23–26 1997. Berkeley, CA: University of California.

  • Bonten, L. T. C., Groenenberg, J. E., Weng, L., & Van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.

    Article  CAS  Google Scholar 

  • Bradford, G. R., Bair, F. L., & Hunsaker, V. (1971). Trace and major element contents of soil saturation extracts. Soil Science, 112, 225–230.

    Article  CAS  Google Scholar 

  • Brand, E., Peijnenburg, W., Goenenberg, B., Vink, J., Lijzen, J., Ten Hulscher, D., et al. (2009). Towards implementation of bioavailability measurements in the Dutch regulatory framework. RIVM Report 711701084/2009.

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33, 522–531.

    Article  CAS  Google Scholar 

  • Bruemmer, G. W., Gerth, J., & Herms, U. (1986). Heavy metal species, mobility and availability in soils. Journal of Plant Nutrition and Soil Science, 149, 382–398.

    CAS  Google Scholar 

  • Bruemmer, G. W., & Herms, U. (1983). Influence of soil fraction and organic matter on the solubility of heavy metals in soils. In B. Ulrich & J. L. Pankrath (Eds.), Effects of accumulation of air pollutants in forest ecosystems. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Brun, L. A., Maillet, J., Hinsinger, P., & Pépin, M. (2001). Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution, 111, 293–302.

    Article  CAS  Google Scholar 

  • Campbell, D. J., & Beckett, P. H. (1988). The soil solution in s soil treated with digested sewage sludge. Journal of Soil Science, 39, 283–298.

    Article  CAS  Google Scholar 

  • Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56, 45–51.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian environmental quality guidelines. Soil Quality Guidelines for the Protection of Environmental and Human Health. Last updated 2007.

  • Chen, G.-C., Liu, Y., Wang, R., Zhang, J., & Owens, G. (2013). Cadmium adsorption by willow root: The role of cell walls and their subfractions. Environmental Science and Pollution Research International, 20, 5665–5672.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. The Science of the Total Environment, 337, 175–182.

    Article  CAS  Google Scholar 

  • Christensen, J. B., & Christensen, T. H. (2000). The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate polluted groundwater. Water Research, 34, 3743–3754.

    Article  CAS  Google Scholar 

  • Davies, B. (1992). Inter-relationships between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soil by radish (Raphanus sativus L.). Water, Air, and Soil pollution, 63, 331–342.

    Article  CAS  Google Scholar 

  • Davison, W., & Zang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367, 546–548.

    Article  CAS  Google Scholar 

  • De Vries, W., Čurlík, J., Murányi, A., Alloway, B., & Groenenberg, B. J. (2005). Assessment of relationships between total and reactive concentrations of cadmium, copper, lead and zinc in Hungarian and Slovakian soils. Ekologia (Cssr), 24, 152–169.

    Google Scholar 

  • Degryse, F., Broos, K., Smolders, E., & Merckx, R. (2003). Soil solution concentration of Cd and Zn can be predicted with a CaCl2 soil extract. European Journal of Soil Science, 54, 149–157.

    Article  CAS  Google Scholar 

  • Degryse, F., Smolders, E., & Parker, D. R. (2006). Metal complexes increase uptake of Zn and Cu by plants: Implications for uptake and deficiency studies in chelator-buffered solutions. Plant and Soil, 289, 171–185.

    Article  CAS  Google Scholar 

  • Degryse, F., Smolders, E., Zang, H., & Davison, W. (2009). Predicting availability of mineral elements to plants with the DGT technique: A review of experimental data and interpretation by modeling. Environmental Chemistry, 6, 198–218.

    Article  CAS  Google Scholar 

  • Derz, K., Bernhardt, C., Hennecke, D., & Koerdel, W. (2012). Ansaetze zur Bewertung der Verfuegbarkeit von Schadstoffen im nachsorgenden Bodenschutz—Teil II: Verfuegbarkeit fuer Stofftransport und Abbauprozesse in Boeden. Bodenchutz, 4, 108–112.

    Google Scholar 

  • Desaules, A. (2012). Critical evaluation of soil contamination assessment methods for trace metals. The Science of the Total Environment, 426, 120–131.

    Article  CAS  Google Scholar 

  • Desaules, A., & Studer, K. (1993). Nationales Bodenbeobachtungsnetz—Messresultate 1985–1991. Schriftenreihe Umwelt, 200, 1–75. Bern: Bundesamt fuer Umwelt, Wald und Landschaft.

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science and Technology, 38, 4390–4395.

    Article  CAS  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2009). Evaluation of a generic multisurface sorption model for inorganic soil contaminants. Environmental Science and Technology, 43, 6196–6201.

    Article  CAS  Google Scholar 

  • Dong, D., Zhao, X., Hua, X., Liu, J., & Gao, M. (2009). Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Journal of Hazardous Materials, 162, 1261–1268.

    Article  CAS  Google Scholar 

  • EA (British Environment Agency). (2004). Soil screening values for use in UK ecological risk assessment. Bristol, UK: EA.

    Google Scholar 

  • EA (British Environment Agency). (2009). Land contamination: Soil guideline values (SGVs). Science Report SC050021, Bristol, UK. https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs. Accessed 24 Nov 2014

  • Echevarria, G., Massoura, S. T., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of nickel in soils. Environmental Toxicology and Chemistry, 25, 643–651.

    Article  CAS  Google Scholar 

  • Ehlers, L. J., & Luthy, R. G. (2003). Contaminant bioavailability in soil and sediment. Environmental Science and Technology, 37, 295A–302A.

    Article  CAS  Google Scholar 

  • Elgala, A. M., El-Damaty, A. H., & Abdel-Latif, I. (1976). Stability constants of complexes of humic and fulvic acids isolated from organic-enriched Egyptian soils with iron, manganese, and zinc cations. Journal of Plant Nutrition and Soil Science, 139, 293–300.

    Google Scholar 

  • Elliott, H. A., Liberati, M. R., & Huang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 15, 214–219.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevic, M., Sebek, O., & Grygar, T. (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments: Analytical and thermodynamic approaches. Analytica Chimica Acta, 602, 131–140.

    Article  CAS  Google Scholar 

  • European Commission. (2011). Commission regulation (EU) No 420/2011, amending regulation (EC) No 1881/2006, setting maximum levels for certain contaminants in foodstuffs.

  • Fang, J., Wen, B., Shan, X. Q., Lin, J. M., & Owens, G. (2007). Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils. Environmental Pollution, 150, 209–217.

    Article  CAS  Google Scholar 

  • Fedotov, P. S., Koerdel, W., Miró, M., Peijnenburg, W. J. G. M., Wennrich, R., & Huang, P.-M. (2012). Extraction and fractionation methods for exposure assessment of trace metals, metalloids and hazardous organic compounds in terrestrial environments. Critical Reviews in Environmental Science and Technology, 42, 1117–1171.

    Article  CAS  Google Scholar 

  • Fischer, L., Bruemmer, G. W., & Barrow, N. J. (2007). Observations and modelling of the reactions of 10 metals with goethite: Adsorption and diffusion processes. European Journal of Soil Science, 58, 1304–1315.

    Article  CAS  Google Scholar 

  • FOEFL (Swiss Federal Office of Environment, Forest and Landscape). (1998a). Ordinance of 1 July 1998 on the Pollution of Soil (Verordnung ueber Belastungen des Bodens, VBBo). SR 814.01. Last amended on 1 June 2012. Bern, Swiss.

  • FOEFL (Swiss Federal Office of Environment, Forest and Landscape). (1998b). Ordinance of 26 August 1998 on the Remediation of Contaminated Sites (Verordnung ueber die Sanierung von belasteten Standorten, Altlasten-Verordnung, AltlV). SR 814.01. Last amended on 1 August 2012. Bern, Swiss.

  • Fonseca, B., Figueiredo, H., Rodrigues, J., Queiroz, A., & Tavares, T. (2011). Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: A comparative study. Geoderma, 164, 232–237.

    Article  CAS  Google Scholar 

  • Forbes, E. A., Posner, A. M., & Quirk, J. P. (1976). The specific adsorption of divalent Cd Co, Cu, Pb, and Zn on geothite. Journal of Soil Science, 27, 154–166.

    Article  CAS  Google Scholar 

  • Gamble, D. S. (1986). Interactions between natural organic polymers and metals in soil and fresh water systems: Equilibria. In M. Bernhard, F. E. Brinckman, & P. J. Sadler (Eds.), The importance of chemical speciation in environmental processes. Berlin: Dahlem Konferenzen, Springer.

    Google Scholar 

  • Ge, Y., MacDonald, D., Sauve, S., & Hendershot, W. (2005). Modeling of Cd and Pb speciation in soil solutions by WinHumic V and NICA-Donnan model. Environmental Modelling and Software, 20, 353–359.

    Article  Google Scholar 

  • Gerth, J., & Bruemmer, G. (1981). Einfluss von Temperatur und Reaktionszeit auf die Adsorption von Nickel, Zink, und Cadmium durch Geothite. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 32, 229–238.

    Google Scholar 

  • Gerth, J., & Bruemmer, G. (1983). Adsorption and Festlegung von Nickel, Zink und Cadmium durch Goethit (α-FeOOH). Fresenius’ Zeitschrift fuer Analytische Chemie, 316, 616–620.

    Article  CAS  Google Scholar 

  • Griffin, R. A., & Shimp, N. F. (1978). Attenuation of pollutants in municipal landfill leachate by clay minerals. EPA-600/2-78-157. Cincinnati, Ohio.

  • Groenenberg, J. E., Roemkens, P. F. A. M., Comans, R. N. J., Luster, J., Pampura, T., Shotbolt, L., et al. (2010). Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: Derivation of relationships for free metal ion activities and validation with independent data. European Journal of Soil Science, 61, 58–73.

    Article  CAS  Google Scholar 

  • Groenenberg, J. E., Roemkens, P. F. A. M., Tipping, E., Pampura, T., De Vries, W., & Schutze, G. (2002). Transfer functions for the calculation of critical loads for lead, cadmium and mercury. In Proceedings of the expert meeting on critical limits for heavy metals and methods for their application. December 2–4 2002, held under the UN/ECE Convention on Long-Range Transboundary Air Pollution. UBA-Texte 47/03. Berlin: Umweltbundesamt.

  • Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution-evaluation of DIN 19730. Journal of Soils and Sediments, 5, 101–106.

    Article  CAS  Google Scholar 

  • Han, F., Shan, X., Zhang, S., Wen, B., & Owens, G. (2006). Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant and Soil, 289, 355–368.

    Article  CAS  Google Scholar 

  • Harmsen, J. (2007). Measuring bioavailability: From a scientific approach to standard methods. Journal of Environmental Quality, 36, 1420–1428.

    Article  CAS  Google Scholar 

  • Herms, U. (1982). Investigation on heavy metal solubility in contaminated soils and composted plant residue in relation to soil reaction, redox conditions, and nutrient status (in German). Ph.D. Dissertaiton. Kiel. Germany.

  • Herms, U., & Bruemmer, G. W. (1984). Einflussgoressen der Schwermetallloeslichkeit und -bindung in Boeden. Journal of Plant Nutrition and Soil Science, 147, 400–424.

    CAS  Google Scholar 

  • Herter, U., & Kuelling, D. (2001). Risikoanalyse zur Abfallduengerverwertung in der Landwirtschaft—Teil 1: Grobbeurteilung. Bericht der Eidgenoessische Forschungsanstalt fuer Agraroekologie und Landbau FAL. Zuerich-Reckenholz.

  • Hodson, M. E., Vijver, M. G., & Peijnenburg, W. J. G. M. (2011). Bioavailability in soils. In F. A. Swartjes (Ed.), Dealing with contaminated sites: from theory toward practical application (pp. 721–747). Berlin: Springer.

    Chapter  Google Scholar 

  • Houba, V. J. G., Lexmond, Th M, Novozamsky, I., & Van Der Lee, J. J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. The Science of the Total Environment, 178, 21–28.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y. (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 63, 762–771.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., & Koerdel, W. (2003). Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicology and Environmental Safety, 56, 52–62.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., & Korrdel, W. (2012). Ansaetze zur Bewertung der Verfuegbarkeit von Schadstoffen im nachsorgenden Bodenschutz—Teil III: Verfuegbarkeit/Bioverfuegbarkeit von Schadstoffen fuer Pflanzen und Bodenorganismen. Bodenchutz, 4, 113–119.

    Google Scholar 

  • Irha, N., Steinnes, E., Kirso, U., & Petersell, V. (2009). Mobility of Cd, Pb, Cu, and Cr in some Estonian soil types. Estonian Journal of Earth Sciences, 58, 209–214.

    Article  Google Scholar 

  • ISO 14870. (2001). Soil quality—extraction of trace elements by buffered DTPA solution.

  • ISO 17402. (2008). Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. Geneva, Switzerland.

  • ISO 19730. (2008). Soil quality—extraction of trace elements from soil using ammonium nitrate solution.

  • ISO/DIS 17586. (2013). Soil quality—extraction of trace elements using dilute nitric acid.

  • ISO/FDIS 16198. (2014). Soil quality—plant-based test to assess the environmental bioavailability of trace elements to plants.

  • ISO/TS 21268-2. (2007). Soil quality—leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials—part 2: Batch test using a liquid to solid ratio of 10 L/kg dry matter.

  • ISO/TS 21268-1. (2007). Soil quality—leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials—part 1: Batch test using a liquid to solid ratio of 2 L/kg dry matter.

  • ISO/TS 21268-3. (2007). Soil quality—leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials—part 3: Up-flow percolation test.

  • Jeffery, J. J., & Uren, U. C. (1983). Copper and zinc species in the soil solution and the effects of soil pH. Australian Journal of Soil Research, 21, 479–488.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, London, New York: CRC Press.

    Google Scholar 

  • Keller, H., & Roemer, W. (2000). Vergleich der Kupfer-, Zink- und Cadmiumaufnahme durch Spinatwurzeln nach Applikation von Cu-, Zn- und Cd-Nitrat bzw. -Citrat in der Nahrlosung. In Merbach et al. (Ed.), Rhizodeposition und Stoffverwertung (pp. 42–48). Leipzig.

  • Kim, R.-Y. (2009). Chromium(VI) analysis, chromium(VI) contaminations of soils from North Rhine-Westphalia (Germany), and model experiments for chromium(VI) reduction and chromium(III) oxidation in soils. Dissertation. University of Bonn, Bonn, Germany.

  • Kim, K.-R., Owens, G., Naidu, R., & Kim, K.-H. (2007). Assessment techniques of heavy metal bioavailability in soil - a critical review. Korean Journal of Soil Science and Fertilizer, 40, 311–325.

    CAS  Google Scholar 

  • Kinniburgh, D. G., Milne, C. J., Benedetti, M. F., Pinheiro, J. P., Filius, J., Koopal, L., & Van Riemsdijk, W. H. (1996). Metal ion binding by humic acid: Application of the NICA-Donnan model. Environmental Science and Technology, 30, 1687–1698.

    Article  CAS  Google Scholar 

  • Kitagishi, K., & Yamane, I. (1981). Features of heavy metal pollution in Japan. In K. Kitagishi & I. Yamane (Eds.), Heavy metal pollution in soils of Japan (pp. 3–15). Tokyo: Japan Scientific Societies Press.

    Google Scholar 

  • Klassen, S. P., McLean, J. E., Grossl, P. R., & Sims, R. C. (2000). Fate and behavior of lead in soils planted with metal-resistant species (river birch and smallwing sedge). Journal of Environmental Quality, 29, 1826–1834.

    Article  CAS  Google Scholar 

  • Kloke, A., Sauerbeck, D. R., & Vetter, H. (1984). In Nriagu, J. O. (Ed.), Changing metal cycles and human health. Berlin: Springer.

  • Koopmans, G. F., Schenkeveld, W. D. C., Song, J., Luo, Y. M., Japenga, J., & Temminghoff, E. J. M. (2008). Influence of EDDS on metal speciation in soil extracts: Measurement and mechanistic multicomponent modeling. Environmental Science and Technology, 42, 1123–1130.

    Article  CAS  Google Scholar 

  • Koster, M., Reijnders, L., Van Oost, N. R., & Peijnenburg, W. J. (2005). Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environmental Pollution, 133, 103–116.

    Article  CAS  Google Scholar 

  • Kramer, B. K., & Ryan, P. B. (2000). Soxhlet and microwave extraction in determining the bioaccessibility of pesticides from soil and model solids. In Proceedings of the 2000 conference on hazardous waste research (pp. 196–210). Environmental challenges and solutions to resource development, production, and use. 23–25 May 2000. Denver, CO.

  • Kwon, S.-I., Jang, Y.-A., Owens, G., Kim, M.-K., Jung, G.-B., Hong, S.-C., et al. (2013). Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic wastes treatments. Environmental Geochemistry and Health, 36, 409–419.

    Article  CAS  Google Scholar 

  • Labanowski, J., Sebastia, J., Foy, E., Jongmans, T., Lamy, I., & Van Oort, F. (2007). Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France. Environmental Pollution, 149, 59–69.

    Article  CAS  Google Scholar 

  • Lanno, R., Wells, J., Conder, J., Bradham, K., & Basta, N. (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicology and Environmental Safety, 57, 39–47.

    Article  CAS  Google Scholar 

  • Lei, M., Zhang, Y., Khan, S., Qin, P.-F., & Liao, B.-H. (2010). Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environmental Monitoring and Assessment, 168, 215–222.

    Article  CAS  Google Scholar 

  • Liebe, F., Welp, G., & Bruemmer, G. W. (1997). Mobilitaet anorganischer Schadstoffe in Boeden Nordrhein-Westfalens. Materialien zur Altlastensanierung und zum Bodenschutz. Band 2. Essen: Landesumweltamt Nordrhein-Westfalen.

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–427.

    Article  CAS  Google Scholar 

  • Liu, G., Xue, W., Tao, L., Liu, X., Hou, J., Wilton, M., et al. (2014). Vertical distribution and mobility of heavy metals in agricultural soils along Jishui river affected by mining in Jiangxi Province, China. Clean: soil, Air, Water, 42, 1450–1456.

    CAS  Google Scholar 

  • Lock, K., De Schamphelaere, K. A. C., Because, S., Criel, P., Van Eeckhout, H., & Janssen, C. R. (2007). Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environmental Pollution, 147, 626–633.

    Article  CAS  Google Scholar 

  • Macholz, R. M., Kaiser, D. B., Koerdel, W., Hund-Rinke, K., Derz, K., & Bernhardt, C. (2011). Evaluation of existing assessment approaches and development of a concept for the integrated assessment of the effects of priority pollutants across all pathways on the basis of their bioavailability. Text 59. Berlin: Umweltbundesamt.

  • Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., & Madrid, L. (2007). Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environmental Pollution, 147, 713–722.

    Article  CAS  Google Scholar 

  • Mahara, Y., Kubota, T., Wakayama, R., Nakano-Ohta, T., & Nakamura, T. (2007). Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristic. The Science of the Total Environment, 387, 220–227.

    Article  CAS  Google Scholar 

  • Manouchehri, N., Besancon, S., & Bermond, A. (2006). Major and trace metal extraction from soil by EDTA: Equilibrium and kinetic studies. Analytica Chimica Acta, 559, 105–112.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • McBride, M. B., & Bouldin, D. R. (1984). Long-term reactions of copper(II) in a contaminated calcareous soil. Soil Science Society of America Journal, 48, 56–59.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Maier, N. A., Rayment, G. E., Sparrow, L. A., Berg, G., McKay, A., et al. (1997). Cadmium in Australian potato tubers and soils. Journal of Environmental Quality, 23, 1644–1649.

    Article  Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • ME (Ministry of Environment, Korea). (1995). Enforcement rule of the soil environment conservation act. Last amended on 30 April 2014. Gwacheon, Republich of Korea: Ministry of Environment.

    Google Scholar 

  • Meers, E., Samson, R., Tack, F. M. G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., & Verloo, M. G. (2007). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany, 60, 385–396.

    Article  CAS  Google Scholar 

  • Meeussen, J. C. L. (2003). ORCHESTRA, a new object-oriented framework for implementation chemical equilibrium models. Environmental Science and Technology, 37, 1175–1182.

    Article  CAS  Google Scholar 

  • Mendoza, J., Garrido, T., Castillo, G., & San Martin, N. (2006). Metal availability and uptake by sorghum plants grown in soils amended with sludge from different treatments. Chemosphere, 65, 2304–2312.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  • MfE (Ministry for the Environment, New Zealand). (2011). Contaminated land management guidelines No. 2. Hierarchy and application in New Zealand of environmental guideline values (Revised 2011). Wellington, New Zealand.

  • MfE (Ministry for the Environment). (1997). Guidelines for assessing and managing contaminated gasworks sites in New Zealand. New Zealand: Wellington.

    Google Scholar 

  • MfE (Ministry for the Environment). (2006). Identifying, investigating and managing risks associated with former sheep-dip sites: A guide for local authorities. New Zealand: Wellington.

    Google Scholar 

  • Minkina, T. M., Motuzova, G. A., & Nazarenko, O. G. (2006). Interaction of heavy metals with organic matter of an ordinary chernozem. Eurasian Soil Science, 39, 720–726.

    Article  Google Scholar 

  • MOEJ (Ministry of the Environment Government of Japan). (1991). Environmental quality standards (EQS) for soil pollution. Last amended on November 1994. Tokyo, Japan.

  • MOEJ (Ministry of the Environment Government of Japan). (2002). Soil Contamination Countermeasures Act (SCCA) Standards. Act of 29 May 2002 (Act No. 53), Last amended on 1 April 2010. Tokyo, Japan.

  • Morel, F. M. M. (1983). Principles of aquatic chemistry. New York, NY: Wiley-Interscience.

    Google Scholar 

  • Morel, J.-L. (1997). Bioavailability of trace elements to terrestrial plants. In J. Tarradellas, G. Bitton, & D. Rossel (Eds.), Soil ecotoxicology (pp. 141–167). Boca Raton, FL: CRC Lewis Publishers.

    Google Scholar 

  • Mousavi, S. M., Bahmanyar, M. A., & Pirdashti, H. (2013). Phytoavailability of some micronutrients (Zn and Cu), heavy metals (Pb, Cd), and yield of rice affected by sewage sludge perennial application. Communications in Soil Science and Plant Analysis, 44, 3246–3258.

    Article  CAS  Google Scholar 

  • NEPC (National Environment Protection Council, Australia). (1999a). Schedule B1. Guideline on investigation levels for soil and groundwater. Adelaide, Australia: National Environment Protection (Assessment of site contamination) Measure 1999. Updated 2013.

    Google Scholar 

  • NEPC (National Environment Protection Council, Australia). (1999b). Schedule B5a. Guideline on ecological risk assessment. National Environment Protection (Assessment of site contamination) Measure 1999. Updated 2013. Australia: Adelaide.

    Google Scholar 

  • NEPC (National Environment Protection Council, Australia). (1999c). Schedule B5c. Guideline on ecological investigation levels for arsenic, chromium (III), copper, DDT, lead, naphthalene, nickel, and zinc. National Environment Protection (Assessment of site contamination) Measure 1999. Updated 2013. Australia: Adelaide.

    Google Scholar 

  • Nolan, A. L., Zhang, H., & McLaughlin, M. J. (2005). Prediction of zinc, cadmium, lead and copper bioavailability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotope dilution technique. Journal of Environmental Quality, 34, 496–507.

    Article  CAS  Google Scholar 

  • Norvell, W. A. (1972). Equilibria of metal chelates in soil solution. In J. J. Mortvedt, P. M. Giordano, & W. L. Lindsay (Eds.), Micronutrients in agriculture (pp. 115–138). Madison, WI: Soil Science Society of America.

    Google Scholar 

  • NRC Committee (National Research Council Committee on bioavailability of contaminants in soils and sediments). (2003). Bioavailability of contaminants in soils and sediments: Processes, tools, and applications. Washington, DC: The National Academic Press.

  • Nriagu, J. O. (1990). Global metal pollution: Poisoning the biosphere? Environment: Science and Policy for Sustainable Development, 32, 7–33.

    Article  Google Scholar 

  • Pampura, T., Groenenberg, J. E., & Rietra, R. P. J. J. (2006). Comparison of methods for copper free ion activity determination in soil solutions of contaminated and background soils. Forest Snow and Landscape Research, 80, 305–322.

    Google Scholar 

  • Pandey, A. K., Pandey, S. D., & Misra, V. M. (2000). Stability constants of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety, 47, 195–200.

    Article  CAS  Google Scholar 

  • Papp, J. F. (1994). Chromium life cycle study. Bureau of Mines. Information circular 9411. Washington, DC: U.S. Department of the Interior.

  • Paradelo, R., Villada, A., & Barral, M. T. (2011). Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost. Journal of Hazardous Materials, 188, 98–104.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, chapter A43. Available only at http://pubs.usgs.gov/tm/06/a43/. Accessed 24 Nov 2014

  • Peijnenburg, W., Posthuma, L., Eijsackers, H., & Allen, H. (1997). A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicology and Environmental Safety, 37, 163–172.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G. M., Zablotskaja, M., & Vijver, M. G. (2007). Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67, 163–179.

    Article  CAS  Google Scholar 

  • Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.

    Article  CAS  Google Scholar 

  • Reichenberg, F., & Mayer, P. (2006). Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environmental Toxicology and Chemistry, 25, 1239–1245.

    Article  CAS  Google Scholar 

  • Remon, E., Bouchardon, J. L., Cornier, B., Guy, B., Leclerc, J. C., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323.

    Article  CAS  Google Scholar 

  • Rieder, W., & Schwertmann, U. (1972). Kupferanreicherung in hopfengenutzten Boeden der Hallertau. Landwirtsch Forsch, 25, 170–177.

    CAS  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical load approach for metals. Chemical Speciation and Bioavailability, 10, 61–75.

    Article  CAS  Google Scholar 

  • Roemkens, P. F., Guo, H.-Y., Chu, C.-L., Liu, T.-S., & Chiang, C.-F. (2009a). Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning. Journal of Soils and Sediments, 9, 216–228.

    Article  CAS  Google Scholar 

  • Roemkens, P. F. A. M., Guo, H. Y., Chu, C. L., Liu, T. S., Chiang, C. F., & Koopmans, G. F. (2009b). Prediction of cadmium uptake by brown rice and derivation of soil–plant transfer models to improve soil protection guidelines. Environmental Pollution, 157, 2435–2444.

    Article  CAS  Google Scholar 

  • Sauerbeck, D., & Rietz, E. (1981). Zur Cadmiumbelastung von Mineralduengern in Abhaengigkeit von Rohstoff und Herstellungsverfahren. Landwirtsch Forsch, 37, 685–696.

    Google Scholar 

  • Schnitzer, M., & Hansen, E. H. (1970). Organo-metallic interactions in soils: 8. An evaluation of methods for the determination of stability constants of metal-fulvic acid complexes. Soil Science, 109, 333–340.

    Article  CAS  Google Scholar 

  • Schnitzer, M., & Kerndorff, H. (1981). Reactions of fulvic acid with metal ions. Water, Air, and Soil pollution, 15, 97–108.

    Article  CAS  Google Scholar 

  • Schnitzer, M., & Khan, S. U. (Eds.). (1978). Soil organic matter. Amsterdam: Elsevier.

    Google Scholar 

  • Schroeder, T. J., Hiemstra, T., & Vink, J. P. M. (2005). Modeling of the solid–solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse. Environmental Science and Technology, 39, 7176–7184.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38, 228A–231A.

    Article  CAS  Google Scholar 

  • Sholkovitz, E. R., & Copland, D. (1981). The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water. Geochimica et Cosmochimica Acta, 45, 181–189.

    Article  CAS  Google Scholar 

  • Shor, L. M., & Kosson, D. S. (2000). Bioavailability of organic contaminants in soils. In J. J. Valdes (Ed.), Bioremediation (pp. 15–43). Amsterdam: Kluwer Academics Publishers.

    Chapter  Google Scholar 

  • Skeffington, R. A., Shewry, P. R., & Peterson, P. J. (1976). Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta, 132, 209–214.

    Article  CAS  Google Scholar 

  • Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environmental International, 35, 142–156.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1976). Stabiltiy constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Science Society of America Journal, 40, 665–672.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1982). Humus chemistry: Genesis, composition reactions. New York: Wiley.

    Google Scholar 

  • Stevenson, F. J. (1983). Trace metal-organic matter interactions in geologic environments. In Augustithis, S. S. (Ed.), Trace elements in petrogenesis. Athens: Theophrastus Publications.

  • Taghon, G. L., Kosson, D. S., Rockne, K. J., & Shor, L. M. (1999). Bioavailability of organic contaminants in estuarine sediments to microbes and benthic animals. Final Report. EPA Grant Number: R825303. Rutgers University, New Brunswick.

  • Takamatsu, T., & Yoshida, T. (1978). Determination of stability constants of metal-humic acid complexes by potentiometric titration and ion-selective electrodes. Soil Science, 125, 377–386.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F.-J., & McGrath, S. P. (2006). A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science and Technology, 40, 7085–7093.

    Article  CAS  Google Scholar 

  • Tiller, K. G., Gerth, J., & Brummer, G. (1984). The relative affinities of Cd, Ni, and Zn for different soil clay fractions and goethite. Geoderma, 34, 17–35.

    Article  CAS  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. R., et al. (2003). The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225.

    Article  CAS  Google Scholar 

  • Tokalioglu, S., Kartal, S., & Gunes, A. A. (2004). Statistical evaluation of bioavailability of metals to grapes growing in contaminated vineyard soils using single extractants. International Journal of Environmental Analytical Chemistry, 84, 691–705.

    Article  CAS  Google Scholar 

  • US EPA (United States Environment Protection Agency). (2002). Supplemental guidance for developing soil screening levels for superfund sites. Washington DC. Available at: http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssg_main.pdf. Accessed 24 Nov 2014

  • US EPA (United States Environment Protection Agency). (2005). Ecological soil screening level (Eco-SSL) guidance and documents. Washington DC. Available at: http://www.epa.gov/oswer/riskassessment/ecorisk/ecossl.htm. Accessed 24 Nov 2014

  • VROM (Dutch Ministry of Housing, Spatial Planning and the Environment). (2007). Soil quality decree (Besluit bodemkwaliteit). The Netherlands.

  • VROM (Dutch Ministry of Housing, Spatial Planning and the Environment). (2009). Soil remediation circular 2009 (Circulaire Bodemsanering 2009). The Netherlands: Circular on target values and intervention values for soil remediation.

    Google Scholar 

  • Wang, X., Chen, X., Liu, S., & Ge, X. (2010). Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce. Journal of Environmental Sciences, 22, 1960–1965.

    Article  CAS  Google Scholar 

  • Warrington, G. E., & Skogley, E. O. (1997). Bioavailability and the soil solution. Warrington ECological Systems Analysis (WECSA), Saint Ignatius, MT.

  • Weiss, D. J., Mason, T. F. D., Zhao, F. J., Kirk, G. J. D., Coles, B. J., & Horstwood, M. S. A. (2004). Isotopic discrimination of zinc in higher plants. The New Phytologist, 165, 703–710.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., & Van Riemsdijk, W. H. (2001). Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environmental Science and Technology, 35, 4436–4443.

    Article  CAS  Google Scholar 

  • Weng, L., Van Riemsdijk, W. H., & Temminghof, E. J. (2005). Kinetic aspects of donnan membrane technique for measuring free trace cation concentration. Analytical Chemistry, 77, 2852–2861.

    Article  CAS  Google Scholar 

  • Wong, J. W. C., Li, K. L., Zhou, L. X., & Selvam, A. (2007). The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge. Geoderma, 137, 310–317.

    Article  CAS  Google Scholar 

  • Zeien, H., & Bruemmer, G. W. (1989). Chemical extractions to identify heavy metal binding forms in soils. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–510.

    Google Scholar 

  • Zhang, M. K., Zhou, C., & Huang, C. Y. (2006). Relationship between extractable metals in acid soils and metals taken up by tea plants. Communications in Soil Science and Plant Analysis, 37, 347–361.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Adams, M. L., Dumont, C., McGrath, S. P., Chaudri, A. M., Nicholson, F. A., et al. (2004). Factors affecting the concentrations of lead in British wheat and barley grain. Environmental Pollution, 131, 461–468.

    Article  CAS  Google Scholar 

  • Zhou, L. X., & Wong, J. W. C. (2003). Behavior of heavy metals in soils: Effect of dissolved organic matter. In H. M. Selim & W. L. Kingery (Eds.), Geochemical and hydrological reactivity of heavy metals in soil (pp. 245–269). Chelse, MI: Lewis Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Rae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, RY., Yoon, JK., Kim, TS. et al. Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37, 1041–1061 (2015). https://doi.org/10.1007/s10653-015-9695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9695-y

Keywords

Navigation