Skip to main content

Advertisement

Log in

The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Rice is a staple food in China, but it may contain toxic heavy metals. Hence, the concentrations of arsenic (As) species (AsIII, AsV, MMA and DMA) were evaluated in 260 rice samples from 13 cities of Guangdong Province, the most economically dynamic provinces of China. The levels of sum concentrations of As species in rice samples varied from non-detect to 225.58 ng g−1, with an average value of 57.27 ng g−1. The mean concentrations of the major As species detected in rice samples were in the order AsIII (34.77 ng g−1) > AsV (9.34 ng g−1) > DMA (8.33 ng g−1) > MMA (4.82 ng g−1). The rice samples of Guangdong Province were categorized as inorganic As type. Significant geographical variation of As speciation existed in rice samples of 13 cities of Guangdong Province by chi-square test (p < 0.05). The average human weekly intakes of inorganic As via rice consumption in Guangdong Province, southern China, were 1.91 µg kg−1 body weight. Hazard quotients of total As via rice consumption of adults in 13 cities ranged from 0.06 to 0.30, indicating the As contents in rice from Guangdong Province had no potential adverse impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agusa, T., Kunito, T., Minh, T. B., Kim Trang, P. T., Iwata, H., Viet, P. H., et al. (2009). Relationship of urinary arsenic metabolites to intake estimates in residents of the red river delta, vietnam. Environmental Pollution, 157(2), 396–403.

    Article  CAS  Google Scholar 

  • Batista, B. L., Souza, J. M. O., De Souza, S. S., & Barbosa, F., Jr. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials, 191(1–3), 342–348.

    Article  CAS  Google Scholar 

  • CCCF. (2012). Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods: Proposed draft maximum levels for arsenic in rice, 6th Session, Maastricht, The Netherlands, 2012 (ftp://www.fao.org/codex/meetings/cccf/cccf6/cf06_08e.pdf).

  • Dopp, E., Hartmann, L. M., Florea, A. M., von Recklinghausen, U., Pieper, R., Shokouhi, B., et al. (2004). Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicology and Applied Pharmacology, 201(2), 156–165.

    Article  CAS  Google Scholar 

  • Fang, Y., Sun, X., Yang, W., Ma, N., Xin, Z., Fu, J., et al. (2014). Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chemistry, 147, 147–151.

    Article  CAS  Google Scholar 

  • Fu, J. J., Zhang, A. Q., Wang, T., Qu, G. B., Shao, J. J., Yuan, B., et al. (2013). Influence of E-Waste dismantling and its regulations: Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environmental Science and Technology, 47(13), 7437–7445.

    CAS  Google Scholar 

  • Gilbert-Diamond, D., Cottingham, K. L., Gruber, J. F., Punshon, T., Sayarath, V., Gandolfi, A. J., et al. (2011). Rice consumption contributes to arsenic exposure in US women. Proceedings of National Academy of Sciences, 108(51), 20656–20660.

    Article  CAS  Google Scholar 

  • Gulz, P., Gupta, S.-K., & Schulin, R. (2005). Arsenic accumulation of common plants from contaminated soils. Plant and Soil, 272(1–2), 337–347.

    Article  CAS  Google Scholar 

  • Halder, D., Bhowmick, S., Biswas, A., Mandal, U., Nriagu, J., Guha Mazumdar, D. N., et al. (2012). Consumption of brown rice: A potential pathway for arsenic exposure in rural Bengal. Environmental Science and Technology, 46(7), 4142–4148.

    Article  CAS  Google Scholar 

  • Hwang, Y.-H., Chen, Y.-H., Su, Y.-N., Hsu, C.-C., Chen, Y.-H., & Yuan, T.-H. (2010). Genetic polymorphism of As3MT and delayed urinary DMA excretion after organic arsenic intake from oyster ingestion. Journal of Environmental Monitoring, 12(6), 1247–1254.

    Article  CAS  Google Scholar 

  • JECFA. (2010). Joint FAO/WHO Expert Committee on Food Additives. Summary and conclusions of 72nd meeting; Rome, Italy, 2010 (http://www.who.nt/foodsafety/chem/summary72_rev.pdf)cccf/cccf6/cf06_08e.pdf).

  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., et al. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95–107.

    CAS  Google Scholar 

  • Leung, A. O., Duzgoren-Aydin, N. S., Cheung, K. C., & Wong, M. H. (2008). Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environmental Science and Technology, 42(7), 2674–2680.

    Article  CAS  Google Scholar 

  • Liao, X.-Y., Chen, T.-B., Xie, H., & Liu, Y.-R. (2005). Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environment International, 31(6), 791–798.

    Article  CAS  Google Scholar 

  • Liu, C. P., Luo, C. L., Gao, Y., Li, F. B., Lin, L. W., Wu, C. A., et al. (2010). Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution, 158(3), 820–826.

    Article  CAS  Google Scholar 

  • Ma, W. J., Deng, F., Xu, Y. J., Xu, H. F., & Nie, D. P. (2005). The study on dietary intake and nutritional status of residents in Guangdong. South China Journal of Preventive Medicine, 31, 1–5. [in Chinese].

    Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (White) rice. Environmental Science and Technology, 43(5), 1612–1617.

    Article  CAS  Google Scholar 

  • Nookabkaew, S., Rangkadilok, N., Mahidol, C., Promsuk, G., & Satayavivad, J. (2013). Determination of arsenic species in rice from Thailand and other Asian Countries using simple extraction and HPLC-ICP-MS analysis. Journal of Agriculture and Food Chemistry, 61(28), 6991–6998.

    Article  CAS  Google Scholar 

  • Norton, G., Deacon, C., Mestrot, A., Feldmann, J., Jenkins, P., Baskaran, C., et al. (2013). Arsenic speciation and localization in horticultural produce grown in a historically impacted mining region. Environmental Science and Technology, 47(12), 6164–6172.

    CAS  Google Scholar 

  • Peterson, E. W. F., Jin, L., & Ito, S. (1991). An econometric analysis of rice consumption in the People’s Republic of China. Agricultural Economics, 6(1), 67–78.

    Article  Google Scholar 

  • Rahman, M., Ng, J., & Naidu, R. (2009). Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 31(1), 189–200.

    Article  CAS  Google Scholar 

  • Rosen, B. R., & Liu, Z. (2009). Transport pathways for arsenic and selenium: A minireview. Environment International, 35(3), 512–515.

    Article  CAS  Google Scholar 

  • Tuli, R., Chakrabarty, D., Trivedi, P., & Tripathi, R. (2010). Recent advances in arsenic accumulation and metabolism in rice. Molecular Breeding, 26(2), 307–323.

    Article  CAS  Google Scholar 

  • Wauchope, R. D., Richard, E. P., & Hurst, H. R. (1982). Effects of simulated MSMA drift on rice (Oryza sativa) 2. Arsenic residues in foliage and grain and relationships between arsenic residues, rice toxicity symptoms, and yields. Weed Science, 30, 405–410.

    CAS  Google Scholar 

  • Wei, F. S. (1990). Elemental background contents in the soil of China. Beijing: China Environmental Science Press. (in Chinese).

    Google Scholar 

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39(15), 5531–5540.

    Article  CAS  Google Scholar 

  • Yamauchi, H. F., B. A.. (1984). Arsenic in the environment. Part II: Human health and ecosystem effects; Nriagu, J. O., Ed.; Wiley: New York. p 35.

  • Yan, G., Yang, G. Y., Dong, Q. X., & Huang, C. J. (2007). Distribution of heavy metals in soils from the typical regions of Shantou and their environmental pollution assessment. Environmental Science, 28(5), 1067–1074. (In Chinese).

    Google Scholar 

  • Zavala, Y. J., & Duxbury, J. M. (2008). Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environmental Science and Technology, 42(10), 3856–3860.

    Article  CAS  Google Scholar 

  • Zavala, Y. J., Gerads, R., Gürleyük, H., & Duxbury, J. M. (2008). Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science and Technology, 42(10), 3861–3866.

    Article  CAS  Google Scholar 

  • Zhang, H. H., Yuan, H. X., Hu, Y. G., Wu, Z. F., Zhu, L. A., Zhu, L., et al. (2006). Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China. Environmental Pollution, 144(2), 492–499.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., et al. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science and Technology, 42(13), 5008–5013.

    Article  CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407(5), 1551–1561.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by Natural Science Foundation of Hubei Province of China (No. 2012FFB07301) and Open Funding Project of the Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences, and the Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyi Yang.

Additional information

Kai Lin and Shaoyou Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Lu, S., Wang, J. et al. The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk. Environ Geochem Health 37, 353–361 (2015). https://doi.org/10.1007/s10653-014-9652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9652-1

Keywords

Navigation