Skip to main content

Advertisement

Log in

Risk assessment of particle dispersion and trace element contamination from mine-waste dumps

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study, a model to delimit risk zones influenced by atmospheric particle dispersion from mine-waste dumps is developed to assess their influence on the soil and the population according to the concentration of trace elements in the waste. The model is applied to the Riotinto Mine (in SW Spain), which has a long history of mining and heavy land contamination. The waste materials are separated into three clusters according to the mapping, mineralogy, and geochemical classification using cluster analysis. Two of the clusters are composed of slag, fresh pyrite, and roasted pyrite ashes, which may contain high concentrations of trace elements (e.g., >1 % As or >4 % Pb). The average pollution load index (PLI) calculated for As, Cd, Co, Cu, Pb, Tl, and Zn versus the baseline of the regional soil is 19. The other cluster is primarily composed of sterile rocks and ochreous tailings, and the average PLI is 3. The combination of particle dispersion calculated by a Gaussian model, the PLI, the surface area of each waste and the wind direction is used to develop a risk-assessment model with Geographic Information System GIS software. The zone of high risk can affect the agricultural soil and the population in the study area, particularly if mining activity is restarted in the near future. This model can be applied to spatial planning and environmental protection if the information is complemented with atmospheric particulate matter studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar, J., Dorronsoro, C., Galán, E., & Gómez-Ariza, J. L. (1999). Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnica de toma de muestras y análisis para su investigación. Investigación y desarrollo medioambiental en Andalucía (pp. 61–64). OTRI: Sevilla.

    Google Scholar 

  • Aleksander-Kwaterczak, U., & Helios-Rybicka, E. (2009). Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. Journal of Soils and Sediments, 9, 13–22.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Parvezb, L., Islamc, M. A., Dampared, S. B., & Suzukia, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.

    Article  CAS  Google Scholar 

  • Buttler, J. D. (1979). Air Pollution Chemistry (p. 408). London: Academic Press.

    Google Scholar 

  • Castillo, S., de la Rosa, J., Sánchez de la Campa, A., González-Castanedo, Y., Fernández-Caliani, J. C., Gonzalez, I., et al. (2013). Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district. Science of the Total Environment, 449, 363–372.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007a). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil pollution, 182, 245–261.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007b). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Science of the Total Environment, 373, 488–500.

    Article  CAS  Google Scholar 

  • Donisa, C., Mocanu, R., Steinnes, E., & Vasu, A. (2000). Heavy metal pollution by atmospheric transport in natural soils from the northern part of eastern Carpathians. Water, Air, and Soil pollution, 120, 347–358.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY. Resource document. NOAA Air Resources Laboratory, Silver Spring, MD. (http://www.arl.noaa.gov/ready/hysplit4.html). Accessed 13 Mar 2014.

  • Dudka, S., Piotrowska, M., Chlopecka, A., & Witek, T. (1995). Trace metal contamination of soils and crop plants by the mining and smelting industry in Upper Silesia, South Poland. Journal of Geochemical Exploration, 52, 237–250.

    Article  CAS  Google Scholar 

  • Ekosse, G., van den Heever, D. J., de Jager, L., & Totolo, O. (2004). Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel–copper plant, Botswana. Minerals Engineering, 60, 349–353.

    Article  Google Scholar 

  • Galán, E., Fernández-Caliani, J. C., González, I., Aparicio, P., & Romero, A. (2008). Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. Journal of Geochemical Exploration, 98, 89–106.

    Article  Google Scholar 

  • Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. Science of the Total Environment, 286, 167–179.

    Article  Google Scholar 

  • García Palomero, F. (1992). Mineralizaciones de Riotino (Huelva): geología, génesis y modelos geológicos para su explotación y evaluación de reservas mineras. In J. García Guinea & J. Martínez Frías (Eds.), Recursos minerales de España (pp. 1325–1351). Madrid: CSIC.

  • Ghose, M. K., & Majee, S. R. (2000). Assessment of the impact on the air environment due to opencast coal mining. An Indian case study. Atmospheric Environment, 34, 2791–2796.

    Article  CAS  Google Scholar 

  • Ghose, M. K., & Majee, S. R. (2007). Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environmental Monitoring and Assessment, 130, 17–25.

    Article  CAS  Google Scholar 

  • Herbert, R. B. (1997). Partitioning of heavy metals in podzol soils contaminated by mine drainage waters, Dalarna, Sweden. Water, Air, and Soil pollution, 96, 39–59.

    CAS  Google Scholar 

  • Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., & Celarier, E. (1997). Global distribution of UV-absorbing aerosols from Nimbus7/TOMS data. Journal of Geophysical Resources, 201, 16911–16922.

    Article  Google Scholar 

  • Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 11, 53–59.

    Article  CAS  Google Scholar 

  • Leistel, J. M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G. R., et al. (1998). The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the Thematic Issue. Mineralium Deposita, 33, 2–30.

    Article  CAS  Google Scholar 

  • López, M., González, I., & Romero, A. (2008). Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environmental Geology, 54, 805–818.

    Article  Google Scholar 

  • Macías, F. (1993). Contaminación de suelos: algunos hechos y perspectivas. In R. Ortiz Silla (Ed.), Problemática Geoambiental y Desarrollo, Tomo I (pp. 53–74). Murcia: V Reunión Nacional de Geología Ambiental y Ordenación del Territorio.

  • Massart, D. L., & Kaufman, L. (1983). Interpretation of analytical data by the use of Cluster Analysis. New York: Wiley.

    Google Scholar 

  • Merefield, J. R. (1995). Sediment mineralogy and the environmental impact of mining. In I. D. L. Foster, A. M. Gurnell, & B. W. Webb (Eds.), Sediment and Water Quality in River Catchments (pp. 145–160). London: Wiley.

    Google Scholar 

  • Noble, R. R. P., Hough, R. M., & Watkins, R. T. (2010). Enrichment and exposure assessment of As, Cr and Pb of the soils in the vicinity of Stawell, Victoria, Australia. Environmental Geochemistry and Health, 32, 193–205.

    Article  CAS  Google Scholar 

  • Pierra Conde, A., CasalsBlet, I., & Montes de Oca González, L. (2006). Modelación de emisiones de partículas debidas al transporte de mineral en minas a cielo abierto. Ecosolar, 17. Resource document. Cuba solar. http://www.cubasolar.cu. Accessed 13 Mar 2014.

  • Romero, A., González, I., & Galán, E. (2006). Estimation of potential pollution of waste mining dumps at Peña delHierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Applied Geochemistry, 21, 1093–1108.

    Article  CAS  Google Scholar 

  • Romero, A., González, I., & Galán, E. (2011). Stream water geochemistry from mine wastes in Peña de Hierro, Riotinto Area, SW Spain. A case of extreme acid mine drainage. Environmental Earth Science, 62, 645–656.

    Article  CAS  Google Scholar 

  • Romero, A., González, I., & Galán, E. (2012). Trace elements absorption by citrus in a heavily polluted mining site. Journal of Geochemical Exploration, 113, 76–85.

    Article  CAS  Google Scholar 

  • Ruiz de Almodóvar, G., & Sáez, R. (1992). Los yacimientos de sulfuros masivos de la Faja Pirítica Sur-Ibérica. In J. García Guinea & J. Martínez Frías (Eds.), Recursos minerales de España (pp. 1309–1324). Madrid: CSIC.

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities. Journal of Geochemical Exploration, 53, 53–56.

    Google Scholar 

  • Sánchez de la Campa, A., de la Rosa, J. D., Fernández-Caliani, J. C., & González-Castanedo, Y. (2011). Impact of abandoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belt). Environmental Research, 111, 1018–1023.

    Article  Google Scholar 

  • Stovern, M., Betterton, E. A., Sáez, A. E., Felix Villar, O. I., Rine, K. P., Russell, M. R., et al. (2014). Modeling the emission, transport and deposition of contaminated dust from a mine tailing site. Reviews on Environmental Health, 29, 91–94.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgolander Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Tornos, F., & Heinrich, C. A. (2008). Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chemical Geology, 247, 195–207.

    Article  CAS  Google Scholar 

  • Ward, J. (1963). Hierarchical clustering to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Zheng, J., Huynh, T., Gasparon, M., Ng, J., & Noller, Barry. (2013). Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure. Environmental Science and Pollution Research, 20, 8404–8416.

    Article  CAS  Google Scholar 

  • Zota, A., Paciorek, C. J., Ettinger, A. S., Amarasiriwardena, C., Spengler, J. D., Bellinger, D. C., et al. (2006). Spatial variation in metal biomarkers of peripartum women near a mining-related superfund site. Epidemiology, 17, S123–S124.

    Article  Google Scholar 

  • Zota, A. R., Schaider, L. A., Ettinger, A. S., Wright, R. O., Shine, J. P., & Spengler, J. D. (2011). Metal sources and exposures in the homes of young children living near a mining-impacted Superfund site. Journal of Exposure Science & Environmental Epidemiology, 21, 495–505.

    Article  CAS  Google Scholar 

  • Zota, A. R., Willis, R., Jim, R., Norris, G. A., Shine, J. P., Duvall, R. M., et al. (2009). Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. Journal of the Air and Waste Management Association, 59, 1347–1357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Andalusian Autonomous Government (Project P09-RNM-5163) and the Spanish Ministry of Science and Innovation (Project CGL2008-06270-C02-02/CLI). The authors are grateful to two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, A., González, I., Martín, J.M. et al. Risk assessment of particle dispersion and trace element contamination from mine-waste dumps. Environ Geochem Health 37, 273–286 (2015). https://doi.org/10.1007/s10653-014-9645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9645-0

Keywords

Navigation