Skip to main content
Log in

On the modelling of steady turbulent fountains

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The paper deals with steady-state turbulent fountains in a homogeneous surrounding. A set of mono-dimensional conservation equations is first derived from the Navier–Stokes equations. In contrast with equations used for plumes or rising fountains, these equations reveal additional terms in order to account for the effect of the (annular) down-flow on the fountain up-flow. Large-eddy simulations are then performed and used to determine, from radial profiles, the values of the constants (associated with these additional terms) to be fitted in the model. With these constants, analytical solutions of the model for steady-state fountain are proposed and compared with previous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The CFD code ISIS can be freely downloaded from the following website: https://gforge.irsn.fr/gf/project/isis/.

References

  1. Abraham G (1967) Jets with negative buoyancy in homogeneous fluid. J Hydraul Res 5:235–248

    Article  Google Scholar 

  2. Ansong JK, Kyba PJ, Sutherland BR (2008) Fountains impinging on a density interface. J Fluid Mech 595:115–139

    Article  Google Scholar 

  3. Babik F, Lapuerta C, Suard S (2011) ISIS 3.0.0.: Physical Modelling. Technical report SEMIC-2011-054. Institut de Radioprotection et de Sûreté Nucléaire

  4. Baines WD, Turner JS, Campbell IH (1990) Turbulent fountains in an open chamber. J Fluid Mech 212:557–592

    Article  Google Scholar 

  5. Bloomfield LJ, Kerr RC (1998) Turbulent fountains in a stratified fluid. J Fluid Mech 358:335–356

    Article  Google Scholar 

  6. Bloomfield LJ, Kerr RC (1999) Turbulent fountains in a confined stratified environment. J Fluid Mech 389:27–54

    Article  Google Scholar 

  7. Bloomfield LJ, Kerr RC (2000) A theoritical model of a turbulent fountain. J Fluid Mech 424:197–216

    Article  Google Scholar 

  8. Burridge HC, Hunt GR (2013) The rhythm of fountains: the length and time scales of rise height fluctuations at low and high Froude numbers. J Fluid Mech 728:91–119

    Article  Google Scholar 

  9. Burridge HC, Hunt GR (2012) The rise heights of low- and high-Froude-number turbulent axisymmetric fountains. J Fluid Mech 691:392–416

    Article  Google Scholar 

  10. Campbell IH, Turner JS (1989) Fountains in magma chambers. J Petrol 30:885–923

    Article  Google Scholar 

  11. Candelier F, Vauquelin O (2012) Matched asymptotic solutions for turbulent plumes. J Fluid Mech 699:489–499

    Article  Google Scholar 

  12. Carazzo G, Kaminski E, Tait S (2010) The rise and fall of turbulent fountains: a new model for improved quantitative predictions. J Fluid Mech 657:265–284

    Article  Google Scholar 

  13. Chong MS, Soria J, Perry AE, Chacin J, Cantwell BJ, Na Y (1998) Turbulence structures of wall-bounded shear flows found using DNS data. J Fluid Mech 357:225–247

    Article  Google Scholar 

  14. Clanet C (1998) On large-amplitude pulsating fountains. J Fluid Mech 366:333–350

    Article  Google Scholar 

  15. Cresswell RW, Szczepura RT (1993) Experimental investigation into a turbulent jet with negative buoyancy. Phys Fluids A 5:2865–2878

    Article  Google Scholar 

  16. Friedman PD (2006) Oscillation in height of a negatively buoyant jet. Trans ASME J Fluids Eng 128:880–882

    Article  Google Scholar 

  17. Geyer A, Phillips JC, Mier-Torrecilla MD, Idelsohn SR, Oate E (2012) Flow behaviour of negatively buoyant jets in immiscible ambient fluid. Exp Fluids 52(1):261–271

    Article  Google Scholar 

  18. Hunt GR, Coffey CJ (2009) Characterising line fountains. J Fluid Mech 623:317–327

    Article  Google Scholar 

  19. Kaminski E, Tait S, Carazzo G (2005) Turbulent entrainment in jets with arbitrary buoyancy. J Fluid Mech 526:361–376

    Article  Google Scholar 

  20. Kaye NB, Hunt GR (2006) Weak fountains. J Fluid Mech 558:319–328

    Article  Google Scholar 

  21. Kaye NB (2008) Turbulent plumes in stratified environments: a review of recent work. Atmos Ocean 46:433–441

    Article  Google Scholar 

  22. Lin W, Armfield SW (2000) Direct simulation of of weak axisymmetric fountains in a homogeneous fluid. J Fluid Mech 403:67–88

    Article  Google Scholar 

  23. Lin YJP, Linden PF (2005) The entrainment due to a turbulent fountain at a density interface. J Fluid Mech 542:25–52

    Article  Google Scholar 

  24. McDougall TJ (1981N) Negatively buoyant vertical jets. Tellus 33:313–320

    Article  Google Scholar 

  25. Mehaddi R, Vauquelin O, Candelier F (2012) Analytical solutions for Boussinesq fountains in a linearly stratified environment. J Fluid Mech 691:487–497

    Article  Google Scholar 

  26. Michaux G, Vauquelin O (2008) Solutions for turbulent buoyant plumes rising from circular sources. Phys Fluids 20:066601

    Article  Google Scholar 

  27. Mizushina T, Ogina F, Takeuchi H, Ikawa H (1982) An experimental study of vertical turbulent jet with negative buoyancy. Wärme Stoffübertrag 16:15–21

    Article  Google Scholar 

  28. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A 234:1–23

    Article  Google Scholar 

  29. Morton BR (1959) Forced plumes. J Fluid Mech 5:151–163

    Article  Google Scholar 

  30. Nicoud F, Ducros F (1999) Subgrid scale stress modeling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200

    Article  Google Scholar 

  31. Pantzlaff L, Lueptow RM (1999) Transient positively and negatively buoyant turbulent round jets. Exp Fluids 27:117–125

    Article  Google Scholar 

  32. Papanicolaou PN, Papakonstantis IG, Christodoulou GC (2008) On the entrainment coefficient in negatively buoyant jets. J Fluid Mech 614:447–470

    Article  Google Scholar 

  33. Philippe P, Raufaste C, Kurowski P, Petitjeans P (2005) Penetration of a negatively buoyant jet in a miscible liquid. Phys Fluids 17:053601

    Article  Google Scholar 

  34. Turner JS (1966) Jets and plumes with negative or reversing buoyancy. J Fluid Mech 26:779–792

    Article  Google Scholar 

  35. Williamson N, Srinarayana N, Armfield SW, McBain GD, Lin W (2008) Low-Reynolds-number fountain behaviour. J Fluid Mech 608:297–318

    Article  Google Scholar 

  36. Williamson N, Armfield SW, Lin W (2011) Forced turbulent fountain flow behaviour. J Fluid Mech 671:535–558

    Article  Google Scholar 

  37. Zhang H, Baddour RE (1998) Maximum penetration of vertical round dense jets at small and large Froude numbers. J Hydraul Eng 124:550–553

    Article  Google Scholar 

  38. Zhang H, Baddour RE (1997) Maximum vertical penetration of plane turbulent negatively buoyant jets. J Eng Mech 123:973–977

    Article  Google Scholar 

  39. Zhou X, Luo KH, Williams JJ (2001) Large-eddy simulation of a turbulent forced plume. Eur J Mech-B/Fluids 20:233–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabah Mehaddi.

Appendices

Appendix 1

This appendix details the formulation of ‘the-top hat’ confined model used in this study.

Fig. 11
figure 11

The different steps of the modelling leading to the corrected plume model from the Navier--Stokes equations

From the Navier–Stokes Eq. (2), (3) and (4) and after some algebra, Carazzo et al. [12] derived this new set of equations:

$$ \frac{\partial r u w^2}{\partial r} + \frac{\partial r w^3}{\partial z}= -2 r g w\eta - 2 w \frac{\partial r\overline{ w' u'}}{\partial r}\,,$$
(30)
$$ \frac{\partial r w u \eta }{\partial r} + \frac{\partial r w^2 \eta }{\partial z}= - r g \eta ^2 - \eta \frac{\partial r\overline{ w' u'}}{\partial r}\,,$$
(31)
$$ \frac{\partial r u w^3}{\partial r} + \frac{\partial r w^4}{\partial z}= -3 r g w^2 \eta - 3 w^2 \frac{\partial r\overline{ w' u'}}{\partial r}\,.$$
(32)

The main interest of these equations is that the vertical velocity w is involved in all the r-derivative terms. Then, these terms will vanish when integrated over the up-flow region since \(w(z,r=b)=0\). To integrate these three equations, they also introduced the so-called shape functions of velocity, of density deficit and of shear stress

$$w=w_m(z)f(r,z);\,\eta = \eta _m(z)h(r,z)\quad \,\overline{u' w'} = - \frac{1}{2} w_m(z) ^2 j(r,z)\,.$$

Let us now introduce the following integrals which slightly differ from those given by Carazzo et al. [12]

$$ I_1= \int _0^1 r' f(r',z)h(r',z) \,dr'\, ,$$
(33)
$$ I_2= \int _0^1 f(r',z)\frac{\partial }{\partial r'} \left( r' j(r',z)\right) \, dr'\, ,$$
(34)
$$ I_3= \int _0^1 r' h(r',z)^2\, dr'\,,$$
(35)
$$ I_4= \int _0^1 h(r',z)\frac{\partial }{\partial r'} \left( r' j(r',z)\right) \,dr' ,$$
(36)
$$ I_5= \int _0^1 r' f(r',z)^2 h(r',z)\, dr',$$
(37)
$$ I_6= \int _0^1 f(r',z)^2\frac{\partial }{\partial r'} \left( r' j(r',z)\right) \, dr'\,,$$
(38)
$$ I_7= \int _0^1 r' f(r',z)^3 \,dr'\,,$$
(39)
$$ I_8= \int _0^1 r' f(r',z)^4\,dr',$$
(40)
$$ I_9= \int _0^1 r' f(r',z)^2 h(r',z)\, dr',$$
(41)

where \( r' = r / b \) is the dimensionless radial coordinate.

By integrating Eq. (30), (31) and (32) with respect to \(r' \) from \(0\) to \(1\), we obtain the following set of equations:

$$ \frac{d(b^2 w_m^3)}{dz}= -2gb^2w_m\eta _m \frac{I_1}{I_7} + b w_m^3 \frac{I_2}{I_7} \,,$$
(42)
$$ \frac{d(b^2 w_m^4)}{dz}= -3gb^2w_m^2\eta _m \frac{I_5}{I_8} + \frac{3}{2} b w_m^4 \frac{I_6}{I_8}\,,$$
(43)
$$\frac{d(b^2 w_m^2 \eta _m)}{dz}= -gb^2\eta _m^2 \frac{I_3}{I_9}+\frac{1}{2} b \eta _m w_m^2\frac{I_4}{I_9}\,.$$
(44)

These equations can be rewritten in a form similar to those given by Morton et al. [28], providing (5), (6) and (7), in which the parameters of the theoretical model are

$$\begin{aligned} c_1&= \frac{3}{2}\left( \frac{I_2}{I_7}-\frac{I_6}{I_8} \right) \, ,\quad c_2 =3\left( \frac{I_1}{I_7}-\frac{I_5}{I_8}\right) \,,\\ c_3&= \frac{4I_1}{I_7}-\frac{3I_5}{I_8},\,\quad c_4 =\frac{3I_6}{2I_8}-\frac{2I_2}{I_7}\,,\\ c_5&= \frac{2I_1}{I_7}-\frac{3I_5}{I_8}+\frac{I_3}{I_9},\,\quad c_6 = \frac{I_2}{I_7}-\frac{3I_6}{2I_8}+\frac{I_4}{2 I_9}\,. \end{aligned}$$

The main steps of the calculations presented in this appendix are summarized in Fig. 11 in the form of a diagram.

Appendix 2

In order to obtain analytical expressions for the fountain height and in the same way as done by [11], it is convenient to treat separately the two regimes corresponding to weak (\(\varGamma _i \gg 1\)) or forced (\(\varGamma _i \ll 1\)) fountains.

In the case of weak fountains, we introduce the following relations

$$ \varLambda _i = \frac{\lambda _2 \varGamma _i ^{\omega _1}}{b_i \left( \varGamma _i+1\right) ^{\omega _2}}\quad \hbox { and } \quad \xi = z \varLambda _i \, $$

in (16), then we are led to

$$ \frac{d \varGamma }{d\xi } = \varGamma ^{1-\omega _1}\left( \varGamma +1\right) ^{\omega _2+1}\,.$$
(45)

According to the fact that in the vicinity of the fountain height \(H_{ss}\), \(\varGamma \) tends towards \(\infty \) as \(\xi \rightarrow H_{ss}\varLambda _i\), the fountain function can be sought in this region in the form

$$ \varGamma _{\mathrm{approx}}=\frac{1+\omega _2}{\omega _1-\omega _2-2}\,+\frac{1}{\epsilon (\xi )}\,, $$
(46)

where \(\epsilon (\xi )\) is a function which tends to zero when \(\xi \rightarrow H_{ss} \varLambda _i\).

By injecting (46) in (45) and by expanding this equation with respect to \(\epsilon \), we obtain at leading order

$$ \varGamma _{\mathrm{approx}} \simeq \frac{1+\omega _2}{\omega _1-\omega _2-2}+\Big (\left( \omega _2-\omega _1+1\right) \left( H_{ss}\varLambda _i-\xi \right) \Big )^{-1/\left( \omega _2-\omega _1+1\right) }\,,$$
(47)

where \(H_{ss}\varLambda _i\) is the constant of integration. In order to determine this constant, we use the fact that \(\varGamma _i \gg 1\) which allows us to consider that the approximated solution remains accurate even at the vicinity of the source (\(\varGamma _{\mathrm{approx}}(\xi =0)\simeq \varGamma _i\)). This last step leads us to the following relation :

$$ \frac{H_{ss}}{b_i}=\frac{\left( \varGamma _i+1\right) ^{\omega _2}}{\lambda _2 \varGamma _i ^{\omega _1}} \frac{\left( \varGamma _i -\displaystyle {\frac{1+\omega _2}{\omega _1-\omega _2-2}}\right) ^{-\left( \omega _2-\omega _1+1\right) }}{\left( \omega _2-\omega _1+1\right) }\,. $$
(48)

In the case of forced fountains, Eq. (17) can be split into two parts as follows

$$H_{ss}= \frac{1}{\varLambda _i}\left( \int _{0}^{\infty }\varGamma ^{\omega _1-1} \left( \varGamma +1\right) ^{-\omega _2-1}\,d\varGamma -\int _{0}^{\varGamma _i}\varGamma ^{\omega _1-1} \left( \varGamma +1\right) ^{-\omega _2-1} \,d\varGamma \right) $$
(49)
$$\quad \approx \frac{1}{\varLambda _i}\left( \int _{0}^{\infty }\varGamma ^{\omega _1-1} \left( \varGamma +1\right) ^{-\omega _2-1}\,d\varGamma -\int _{0}^{\varGamma _i}\varGamma ^{\omega _1-1} \,d\varGamma \right) \,,$$
(50)

which finally leads us to the fountain height given by (24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehaddi, R., Vaux, S., Candelier, F. et al. On the modelling of steady turbulent fountains. Environ Fluid Mech 15, 1115–1134 (2015). https://doi.org/10.1007/s10652-015-9400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9400-9

Keywords

Navigation