Skip to main content
Log in

Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In an open channel, a change from a supercritical to subcritical flow is a strong dissipative process called a hydraulic jump. Herein some new measurements of free-surface fluctuations of the impingement perimeter and integral turbulent time and length scales in the roller are presented with a focus on turbulence in hydraulic jumps with a marked roller. The observations highlighted the fluctuating nature of the impingement perimeter in terms of both longitudinal and transverse locations. The results showed further the close link between the production and detachment of large eddies in jump shear layer, and the longitudinal fluctuations of the jump toe. They highlighted the importance of the impingement perimeter as the origin of the developing shear layer and a source of vorticity. The air–water flow measurements emphasised the intense flow aeration. The turbulent velocity distributions presented a shape similar to a wall jet solution with a marked shear layer downstream of the impingement point. The integral turbulent length scale distributions exhibited a monotonic increase with increasing vertical elevation within 0.2 < Lz/d1 < 0.8 in the shear layer, where Lz is the integral turbulent length scale and d1 the inflow depth, while the integral turbulent time scales were about two orders of magnitude smaller than the period of impingement position longitudinal oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brocchini M, Peregrine DH (2001) The dynamics of strong turbulence at free surfaces. Part 1. Description. J Fluid Mech 449: 225–254

    Article  Google Scholar 

  2. Brocchini M, Peregrine DH (2001) The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J Fluid Mech 449: 255–290

    Article  Google Scholar 

  3. Chachereau Y, Chanson H (2011) Free-surface fluctuations and turbulence in hydraulic jumps. Exp Thermal Fluid Sci 35(6): 896–909. doi:10.1016/j.expthermflusci.2011.01.009

    Article  Google Scholar 

  4. Chanson H (2007) Bubbly flow structure in hydraulic jump. Eur J Mech B 26(3): 367–384. doi:10.1016/j.euromechflu.2006.08.001

    Article  Google Scholar 

  5. Chanson H (2009) Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur J Mech B 28(2): 191–210. doi:10.1016/j.euromechflu.2008.06.004

    Article  Google Scholar 

  6. Chanson H (2009) Turbulent air–water flows in hydraulic structures: dynamic similarity and scale effects. Environ Fluid Mech 9(2): 125–142. doi:10.1007/s10652-008-9078-3

    Article  Google Scholar 

  7. Chanson H (2010) Convective transport of air bubbles in strong hydraulic jumps. Int J Multiph Flow 36(10): 798–814. doi:10.1016/j.ijmultiphaseflow.2010.05.006

    Article  Google Scholar 

  8. Chanson H (2011) Hydraulic jumps: turbulence and air bubble entrainment. Journal La Houille Blanche 1:5–16 & Front cover. doi:10.1051/lhb/2011026 (ISSN 0018-6368)

    Google Scholar 

  9. Chanson H (2012) Momentum considerations in hydraulic jumps and bores. J Irrigation Drainage Eng ASCE 138(4): 382–385. doi:10.1061/(ASCE)IR.1943-4774.0000409

    Article  Google Scholar 

  10. Chanson H, Carosi G (2007) Advanced post-processing and correlation analyses in high-velocity air–water flows. Environ Fluid Mech 7(6): 495–508. doi:10.1007/s10652-007-9038-3

    Article  Google Scholar 

  11. Chanson H, Gualtieri C (2008) Similitude and scale effects of air entrainment in hydraulic jumps. J Hydraul Res IAHR 46(1): 35–44

    Article  Google Scholar 

  12. Chanson H, Toombes L (2002) Air–water flows down stepped chutes: turbulence and flow structure observations. Int J Multiph Flow 27(11): 1737–1761

    Article  Google Scholar 

  13. Crowe C, Sommerfield M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, Boca Raton

    Google Scholar 

  14. Felder S, Chanson H (2009) Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Exp Fluids 47(1): 1–18. doi:10.1007/s00348-009-0628-3

    Article  Google Scholar 

  15. Hager WH (1992) Energy dissipators and hydraulic jump. Kluwer Academic Publ, Water Science and Technology Library 8, Dordrecht, The Netherlands

  16. Henderson FM (1966) Open channel flow. MacMillan Company, New York, USA

    Google Scholar 

  17. Hoyt JW, Sellin RHJ (1989) Hydraulic jump as ‘mixing layer’. J Hydraul Eng ASCE 115(12): 1607–1614

    Article  Google Scholar 

  18. Leandro J, Carvalho R, Chachereau Y, Chanson H (2012) Estimating void fraction in a hydraulic jump by measurements of pixel intensity. Exp Fluids 52(5): 1307–1318. doi:10.1007/s00348-011-1257-1

    Article  Google Scholar 

  19. Liggett JA (1994) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  20. Long D, Rajaratnam N, Steffler PM, Smy PR (1991) Structure of flow in hydraulic jumps. J Hydraul Res IAHR 29(2): 207–218

    Article  Google Scholar 

  21. Mouaze D, Murzyn F, Chaplin JR (2005) Free surface length scale estimation in hydraulic jumps. J Fluids Eng Trans ASME 127: 1191–1193

    Article  Google Scholar 

  22. Murzyn F (2010) Assessment of different experimental techniques to investigate the hydraulic jump: do they lead to the same results? In: Janssen R, Chanson H (eds) Hydraulic structures: useful water harvesting systems or relics? Proceedings of the 3rd international junior researcher and engineer workshop on hydraulic structures (IJREWHS’10), 2–3 May 2010, Edinburgh, Scotland. Hydraulic Model Report CH80/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia, pp 3–36

  23. Murzyn F, Chanson H (2008) Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps. Exp Fluids 45(3): 513–521. doi:10.1007/s00348-008-0494-4

    Article  Google Scholar 

  24. Murzyn F, Chanson H (2009) Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ Fluid Mech 9(2): 143–159. doi:10.1007/s10652-008-9077-4

    Article  Google Scholar 

  25. Murzyn F, Chanson H (2009) Free-surface fluctuations in hydraulic jumps: experimental observations. Exp Thermal Fluid Sci 33(7): 1055–1064. doi:10.1016/j.expthermflusci.2009.06.003

    Article  Google Scholar 

  26. Pfister M, Chanson H (2012) Scale effects in physical hydraulic engineering models. Discussion. J Hydraul Res IAHR 50(2): 244–246. doi:10.1080/00221686.2012.654672

    Article  Google Scholar 

  27. Rajaratnam N (1967) Hydraulic jumps. In: Chow VT (ed) Advances in hydroscience, vol 4. Academic Press, New York, pp 197–280

  28. Rao NSL, Kobus HE (1971) Characteristics of self-aerated free-surface flows. Water and waste water/current research and practice 10. Eric Schmidt, Berlin

    Google Scholar 

  29. Resch FJ, Leutheusser HJ (1972) Le Ressaut Hydraulique: Mesure de Turbulence dans la Région Diphasique (The hydraulic jump: turbulence measurements in the two-phase flow region) Jl La Houille Blanche 4:279–293 (in French)

  30. Rouse H, Siao TT, Nagaratnam S (1959) Turbulence characteristics of the hydraulic jump. Trans ASCE 124: 926–950

    Google Scholar 

  31. Sarpkaya T (1996) Vorticity, free surface and surfactants. Ann Rev Fluid Mech 28: 83–128

    Article  Google Scholar 

  32. Schlichting H, Gersten K (2001) Boundary layer theory, 8th ed. Springer, Berlin

    Google Scholar 

  33. Telionis DP (1981) Unsteady viscous flows. Springer, Springer Series in Computational Physics, Berlin

  34. Wood IR (1991) Air entrainment in free-surface flows. IAHR hydraulic structures design manual no. 4, hydraulic design considerations. Balkema Publ, Rotterdam

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Chanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Wang, H. & Chanson, H. Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environ Fluid Mech 13, 189–204 (2013). https://doi.org/10.1007/s10652-012-9254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9254-3

Keywords

Navigation