Skip to main content

Advertisement

Log in

Functional clustering of varved lake sediment to reconstruct past seasonal climate

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

Annually laminated (varved) lake sediments constitutes excellent environmental archives, and have the potential to play an important role for understanding past seasonal climate with their inherent annual time resolution and within-year seasonal patterns. We propose to use functional data analysis methods to extract the relevant information with respect to climate reconstruction from the rich but complex information in the varves, including the shapes of the seasonal patterns, the varying varve thickness, and the non-linear sediment accumulation rates. In particular we analyze varved sediment from lake Kassjön in northern Sweden, covering the past 6400 years. The properties of each varve reflect to a large extent weather conditions and internal biological processes in the lake the year that the varve was deposited. Functional clustering is used to group the seasonal patterns into different types, that can be associated with different weather conditions. The seasonal patterns were described by penalized splines and clustered by the k-means algorithm, after alignment. The observed (within-year) variability in the data was used to determine the degree of smoothing for the penalized spline approximations. The resulting clusters and their time dynamics show great potential for seasonal climate interpretation, in particular for winter climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham C, Cornillon PA, Matzner-Lober E, Molinari N (2003) Unsupervised curve clustering using B-splines. Scand J Stat 30:1–15

    Article  Google Scholar 

  • Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J Geophys Res Biogeosci 112:2156–2202

  • Anderson NJ, Renberg I, Segerström U (1995) Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjön, Northern Sweden). J Ecol 83:809–822

    Article  Google Scholar 

  • Anderson NJ, Arnqvist P, Petterson G, Renberg I, Sjöstedt de Luna S (2010) Climatic influence on the inter-annual variability of late-Holocene minerogenic sediment supply in a boreal forest catchment. Earth Surf Proc Land 35:390–398

    Google Scholar 

  • Beniston M (2005) Warm winter spells in the Swiss Alps: strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site. Geophys Res Lett 32:1–5

    Article  Google Scholar 

  • Büntgen U, Myglan VS, Charpentier Ljungqvist F, McCormick M, Di Cosmo N, Sigl M, Jungclaus J, Wagner S, Krusic PJ, Esper J, Kaplan JO, de Vaan MAC, Luterbacher L, Wacker L, Tegel W, Kirdyanov AV (2016) Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat Geosci 9:231–236

  • Charpentier Ljungqvist F, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94–98

  • Chiou JM, Li PL (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B 69:679–699

    Article  Google Scholar 

  • Crowley TJ, Hyde WT (2008) Transient nature of late Pleistocene climate variability. Nature 456:226–230

    Article  CAS  PubMed  Google Scholar 

  • Eilers HCP, Marx DB (1996) Flexible smoothing with $B$-splines and penalties. Stat Sci 11:89–102

    Article  Google Scholar 

  • Gaffney S (2004) Probabilistic curve-aligned clustering and prediction with mixture models. Ph.D. Dissertation. Department of Computer Science, University of California, Irvine

  • Gaffney S, Smyth P (2004) Joint probabilistic curve clustering and alignment. In: Saul LK, Weiss Y, Bottou L (ed) Advances in neural information processing systems, vol 17. MIT press, New York, pp 473–480

  • García-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22:185–201

    Article  Google Scholar 

  • Gervini D, Gasser T (2005) Nonparametric maximum likelihood estimation of the structural mean of a sample of curves. Biometrika 92:801–820

    Article  Google Scholar 

  • Granlund E (1943) Beskrivning till jordartskarta över Västerbottens län nedanför odlingsgränsen. Geological Survey of Sweden. Series Ca, 26. Stockholm (in Swedish)

  • Heiri O, Brooks SJ, Renssen H, Bedford A, Hazekamp M, Ilyashuk B, Jeffers ES, Lang B, Kirilova E, Kuiper S, Millet L, Samartin S, Toth, M, Verbruggen F, Watson JE, van Asch N, Lammertsma E, Amon L, Birks HH, Birks HJB, Mortensen MF, Hoek WZ, Magyari E, Muñoz Sobrino C, Seppä H, Tinner W, Tonkov S, Veski S, Lotter AF (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4914

  • James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98:397–408

    Article  Google Scholar 

  • Kneip A, Li X, MacGibbon KB, Ramsay JO (2000) Curve registration by local regression. Can J Stat 28:19–29

    Article  Google Scholar 

  • Kneip A, Gasser T (1992) Statistical tools to analyze data representing a sample of curves. Ann Stat 20:1266–1305

  • Kurtek S, Srivastava A, Klassen E, Ding Z (2012) Statistical modeling of curves using shapes and related features. J Am Stat Assoc 107:1152–1165

    Article  Google Scholar 

  • Laudon H, Sjöblom V, Buffham I, Seibert J, Mörth M (2007) The role of catchment scale and landscape characteristics for runoff generation of boreal streams. J Hydrol 344:198–209

    Article  Google Scholar 

  • Liu X, Müller HG (2004) Functional convex averaging and synchronization for time-warped random curves. J Am Stat Assoc 99:687–699

    Article  Google Scholar 

  • Liu X, Yang MCK (2009) Simultaneous curve registration and clustering for functional data. Comput Stat Data Anal 53:1361–1376

    Article  Google Scholar 

  • Ljungqvist FC, Krusic PJ, Sundqvist HS, Zorita E, Brattström G, Frank D (2016) Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532:94–98

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19:474–482

    Article  CAS  PubMed  Google Scholar 

  • MacQueen JB (1967) Some Methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, vol 1, pp 281–297

  • Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni FB (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojala A, Alenius T, Seppä H, Giesecke T (2008) Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes. The Holocene 18:529–538

    Article  Google Scholar 

  • Ojala A, Francus P, Zolitschka B, Besonen M, Lamoureux SF (2012) Characteristics of sedimentary varve chronologies—a review. Quat Sci Rev 43:45–60

    Article  Google Scholar 

  • Ojala A, Kosonen E, Weckström J, Korkonen S, Korhola A (2013) Seasonal formation of clastic-biogenic varves: the potential for palaeoenvironmental interpretations. J Geol Soc Swed 135:237–248

    CAS  Google Scholar 

  • Ojala A, Alenius T (2005) 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Paleoecology 219:285–302

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, T Stocker F, Tschakert P, van Vuuren D, van Ypserle J-P (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC 151

  • Petterson G (1999) Image analysis, varved lake sediments and climate reconstruction. PhD thesis. Umeå university

  • Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9:195–208

    Article  Google Scholar 

  • Petterson G, Odgaard BV, Renberg I (1999) Image analysis as a method to quantify sediment components. J Paleolimnol 22:443–455

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/

  • Ramsay JO, Wickham H, Graves S, Hooker G (2014) FDA: functional data analysis. R package. http://CRAN.R-project.org/package=fda

  • Ramsay JO, Li X (1998) Curve registration. J R Stat Soci Ser B 60:351–363

    Article  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, Berlin

    Google Scholar 

  • Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression, 1st edn. Cambridge University Press, Cambridge

  • Sangalli LM, Secchi P, Vantini S, Vitelli V (2009) A case study in explorative functional data analysis: geometrical features of the internal carotid artery. J Am Stat Assoc 104:37–48

    Article  CAS  Google Scholar 

  • Sangalli LM, Secchi P, Vantini S, Vitelli V (2010) k-mean alignment for curve clustering. Comput Stat Data Anal 54:1219–1233

    Article  Google Scholar 

  • Segerström U (1990) The natural Holocene vegetation development and the introduction of agriculture in northern Norrland, Sweden. In: Studies of soil, peat and especially varved lake sediments. PhD thesis, Ume University

  • Segerström U, Renberg I, Wallin J-E (1984) Annual sediment accumulation and land use history; investigations of varved lake sediments. Verh int Ver Limnol 22:1396–1403

    Google Scholar 

  • Serban N, Wasserman L (2005) Clustering after transformation and smoothing. J Am Stat Assoc 100:471

    Article  CAS  Google Scholar 

  • Sung Y, Genton MG (2011) Functional boxplots. J Comput Graph 20:316–334

  • Tarpey T, Kinateder KJ (2003) Clustering functional data. J Classif 20:93–114

    Article  Google Scholar 

  • Tiljander M, Saarnisto M, Ojala A, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajärvi, central Finland. Boreas 32:566–577

    Article  Google Scholar 

  • Whaba G, Wang Y (1995) Behavior near zero of the distribution of GCV smoothing parameter estimates. Stat Prob Lett 25:105–111

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge valuable comments from two anonymous reviewers. This work was supported by the Swedish Research Council, (Project id D0520301 and 90432301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Arnqvist.

Additional information

Handling Editor Bryan F. J. Manly.

Appendix

Appendix

The Kassjön data covers 6388 years with an error of ± 60 years (Petterson 1999). The varve countings starts from the top of the sediment (1901) and the varve error adds up when calculating so the number of varves are most correct in the beginning, at 1901. The data are recorded yearly and below is a sample from the record.

figure a

The maximum number of observations per year is 36 and the minimum is 3. The data covers 1901 AD to BC 4486. 62 years are missing and they are listed in the table below. In the table the −sign means BC.

Missing years

-4463

-4460

-4457

-4454

-4451

-4448

-4444

-4438

-4423

-4224

-4034

-4033

-4006

-4004

-4002

-3605

-3594

-3550

-3478

-3442

-3393

-2912

-2888

-2804

-2791

-2718

-2544

-2466

-2411

-2408

-2176

-2128

-2119

-1634

-1631

-1474

-1379

-1143

-1062

-1060

-1027

-729

-711

-708

-415

-342

-339

-164

-68

991

993

1251

1309

1454

1473

1477

1489

1492

1500

1688

1755

1848

 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnqvist, P., Bigler, C., Renberg, I. et al. Functional clustering of varved lake sediment to reconstruct past seasonal climate. Environ Ecol Stat 23, 513–529 (2016). https://doi.org/10.1007/s10651-016-0351-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-016-0351-1

Keywords

Navigation