Skip to main content

Advertisement

Log in

How should regional biodiversity be monitored?

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

We consider quantification of biodiversity in the context of targets set by the Convention on Biological Diversity. Implicit in such targets is a requirement to monitor biodiversity at a regional level. Few monitoring schemes are designed with these targets in mind. Monitored sites are typically not selected to be representative of a wider region, and measures of biodiversity are often biased by a failure to account for varying detectability among species and across time. Precision is often not adequately quantified. We review methods for quantifying the biodiversity of regions, consider issues that should be addressed in designing and evaluating a regional monitoring scheme, and offer a practical guide to what types of survey are appropriate for addressing different objectives for biodiversity monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baczkowski AJ, Joanes DN, Shamia GM (2000) The distribution of a generalized diversity index due to Good. Environ Ecol Stat 7: 329–342

    Article  Google Scholar 

  • Barabesi L, Fattorini L (1998) The use of replicated plot, line and point sampling for estimating species abundance and ecological diversity. Environ Ecol Stat 5: 353–370

    Article  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168: 1345

    Article  PubMed  CAS  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16: 909–923

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Buckland, ST, Anderson, DR, Burnham, KP, Laake, JL, Borchers, DL, Thomas, L (eds) (2004) Advanced distance sampling. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Magurran AE, Green RE, Fewster RM (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc Lond B 360: 243–254

    Article  CAS  Google Scholar 

  • Buckland ST, Newman KB, Fernández C, Thomas L, Harwood J (2007) Embedding population dynamics models in inference. Stat Sci 22: 44–58

    Article  Google Scholar 

  • Buckland ST, Studeny AC, Magurran AE, Illian JB, Newson SE (2011a) The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2:Article 100. doi:10.1890/ES11-00186.1

  • Buckland ST, Studeny AC, Magurran AE, Newson SE (2011) Biodiversity monitoring: the relevance of detectability. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 25–36

    Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328: 1164–1168

    Article  PubMed  CAS  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296: 904–907

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11: 265–270

    Google Scholar 

  • Chao A (2005) Species estimation and applications. In: Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences, 2nd edn, vol 12. Wiley, New York, pp 7907–7916

    Google Scholar 

  • Chao A, Shen T-J (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species. Environ Ecol Stat 10: 429–443

    Article  Google Scholar 

  • Clark JS, Ferraz GA, Oguge N, Hays H, Dicostanzo J (2005) Hierarchical Bayes for structured, variable populations: from recapture data to life-history prediction. Ecology 86: 2232–2244

    Article  Google Scholar 

  • Cowell FA (1980) Generalized entropy and the measurement of distributional change. Eur Econ Rev 13: 147–159

    Article  Google Scholar 

  • Diamond JM (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B 325: 469–477

    Article  CAS  Google Scholar 

  • EASAC (2009) Ecosystem services and biodiversity in Europe. The Royal Society, London

    Google Scholar 

  • Egoh B, Reyers B, Rouget M, Bode M, Richardson DM (2009) Spatial congruence between biodiversity and ecosystem services in South Africa. Biol Conserv 142: 553–562

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81: 1970–1984

    Article  Google Scholar 

  • Fewster RM, Buckland ST, Burnham KP, Borchers DL, Jupp PE, Laake JL, Thomas L (2009) Estimating the encounter rate variance in distance sampling. Biometrics 65: 225–236

    Article  PubMed  Google Scholar 

  • Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Animal Ecol 12: 42–58

    Article  Google Scholar 

  • Freeman SN, Noble DG, Newson SE, Baillie SR (2007) Modelling population changes using data from different surveys: the common birds census and the breeding bird survey. Bird Study 54: 61–72

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proc R Soc Lond B 270: 1293–1300

    Article  Google Scholar 

  • Gattone SA, Di Battista T (2009) A functional approach to diversity profiles. Appl Stat 58: 267–284

    Article  Google Scholar 

  • Gregory RD, van Strien A (2010) Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol Sci 9: 3–22

    Article  Google Scholar 

  • Gregory RD, Vorisek P, Noble DG, van Strien A, Klvanova A, Eaton M, Gmelig Meyling AW, Joys A, Foppen RPB, Burfield IJ (2008) The generation and use of bird population indicators in Europe. Bird Conserv Int 18: S223–S244

    Article  Google Scholar 

  • Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J Agric Biol Environ Stat 9: 181–199

    Article  Google Scholar 

  • Heip C (1974) A new index measuring evenness. J Marine Biol Assoc UK 54: 555–557

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432

    Article  Google Scholar 

  • Hoffmann S, Hoffmann A (2008) Is there a ‘true’ diversity?. Ecol Econ 65: 213–215

    Article  Google Scholar 

  • Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75: 3–35

    Article  Google Scholar 

  • Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26: 2465–2466

    PubMed  CAS  Google Scholar 

  • Jaynes ET (1965) Gibbs vs Boltzmann entropies. Am J Phys 33: 391–398

    Article  CAS  Google Scholar 

  • Jost L (2006) Entropy and diversity. OIKOS 113: 363–375

    Article  Google Scholar 

  • Kort JR (1981) Regional economic instability and industrial diversification in the US. Land Econ 57: 596–608

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. OIKOS 76: 5–13

    Article  Google Scholar 

  • Lawton JH, May RM (1995) Extinction rates. Oxford University Press, Oxford

    Google Scholar 

  • Leinster T, Cobbold CA (2012) Measuring diversity: the importance of species similarity. Ecology 93: 477–489

    Article  PubMed  Google Scholar 

  • Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The Living Planet Index: using species population time series to track trends in biodiversity. Philos Trans R Soc Lond B 360: 289–295

    Article  Google Scholar 

  • Luck GW, Harrington R, Harrison PA, Kreman C, Berry PM, Bugter R, Dawson TP, de Bello F, Diaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M, Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Zobel M (2009) Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience 59: 223–235

    Article  Google Scholar 

  • Magnussen S, Boyle TJB (1995) Estimating sample size for inference about the Shannon-Weaver and the Simpson indices of species diversity. For Ecol Manag 78: 71–84

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, Dick JMcP, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt A (2010) Long-term data sets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25: 574–582

    Article  PubMed  Google Scholar 

  • Maurer BA, McGill BJ (2011) Measurement of species diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 55–65

    Google Scholar 

  • MEA (2005) Millennium ecosystem assessment: ecosystems and human wellbeing: biodiversity synthesis. Island Press, Washington

    Google Scholar 

  • New LF, Buckland ST, Redpath S, Matthiopoulos J Modelling the impact of hen harrier management measures on a red grouse population in the UK. OIKOS (Early View at http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0706.2011.19958.x/full) (in press)

  • Newson SE, Woodburn RJW, Noble DG, Baillie SR, Gregory RD (2005) Evaluating the Breeding Bird Survey for producing national population size and density estimates. Bird Study 52: 42–54

    Article  Google Scholar 

  • Patil GP, Taillie C (1982) Diversity as a concept and its measurement. J Am Stat Assoc 77: 548–561

    Article  Google Scholar 

  • Pereira HM, Belnap J, Collen B, Ding H, Gonzalez-Espinosa M, Gregory RD, Honrado J, Jongman RHG, Julliard R, McRae L, Proença V, Rodrigues P, Opige M, Rodriguez JP, Schmeller DS, van Swaay C, Vieira C (2010) Global biodiversity monitoring. Front Ecol Environ 8: 459–460

    Article  Google Scholar 

  • Pereira HM, Cooper HD (2006) Towards the global monitoring of biodiversity change. Trends Ecol Evol 21: 123–129

    Article  PubMed  Google Scholar 

  • Read TRC, Cressie N (1988) Goodness-of-fit statistics for discrete multivariate data. Springer, New York

    Book  Google Scholar 

  • Rényi A (1961) On measures of information and entropy. In: Proceedings of the 4th Berkeley symposium on mathematics, statistics and probability 1960, pp 547–561

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations, and communities. Academic Press, San Diego

    Google Scholar 

  • Scholes RJ, Mace GM, Turner W, Geller GN, Jürgens N, Larigauderie A, Muchoney D, Walther BA, Mooney HA (2008) Toward a global biodiversity observing system. Science 321: 1044–1045

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163: 688

    Article  Google Scholar 

  • Sims M, Elston DA, Harris MP, Wanless S (2007) Incorporating variance uncertainty into a power analysis of monitoring designs. J Agric Biol Environ Stat 12: 236–249

    Article  Google Scholar 

  • Studeny AC (2012) Quantifying biodiversity trends in time and space. PhD thesis, University of St Andrews, St Andrews

  • Studeny AC, Buckland ST, Illian JB, Johnston A, Magurran AE (2011) Goodness-of-fit measures of evenness: a new tool for exploring changes in community structure. Ecosphere 2:Article 15. doi:10.1890/ES10-00074.1

  • Thomas L, Burnham KP, Buckland ST (2004) Temporal inferences from distance sampling surveys. In: Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (eds) Advanced distance sampling. Oxford University Press, Oxford, pp 71–107

    Google Scholar 

  • Thrush SF, Hewitt JE, Dayton PK, Coco G, Lohrer AM, Norkko A, Norkko J, Chiantore M (2009) Forecasting the limits of resilience: integrating empirical research with theory. Proc R Soc Lond B 276: 3209–3217

    Article  Google Scholar 

  • Tong YL (1983) Some distribution properties of the sampling species-diversity indices and their applications. Biometrics 39: 999–1008

    Article  PubMed  CAS  Google Scholar 

  • Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6: 283–290

    Article  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Diuffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selloe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787–790

    Article  PubMed  CAS  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16: 446–453

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Buckland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckland, S.T., Baillie, S.R., Dick, J.M. et al. How should regional biodiversity be monitored?. Environ Ecol Stat 19, 601–626 (2012). https://doi.org/10.1007/s10651-012-0202-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-012-0202-7

Keywords

Navigation