Skip to main content

Advertisement

Log in

A conceptual model of mathematical reasoning for school mathematics

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

The development of students’ mathematical reasoning (MR) is a goal of several curricula and an essential element of the culture of the mathematics education research community. But what mathematical reasoning consists of is not always clear; it is generally assumed that everyone has a sense of what it is. Wanting to clarify the elements of MR, this research project aimed to qualify it from a theoretical perspective, with an elaboration that would not only indicate its ways of being thought about and espoused but also serve as a tool for reflection and thereby contribute to the further evolution of the cultures of the teaching and research communities in mathematics education. To achieve such an elaboration, a literature search based on anasynthesis (Legendre, 2005) was undertaken. From the analysis of the mathematics education research literature on MR and taking a commognitive perspective (Sfard, 2008), the synthesis that was carried out led to conceptualizing a model of mathematical reasoning. This model, which is herein described, is constituted of two main aspects: a structural aspect and a process aspect, both of which are needed to capture the central characteristics of MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The epistemic value of a proposition refers to the notion that an utterance can be true, probable, likely, or false.

  2. In French, the word raisonnement is usually translated as reasoning (see, e.g., Duval, 1991).

  3. Formal proving is referred to in French as démontrer.

  4. Formal proving, an action derivative of formal proof (a term widely used in the mathematics education research literature), should not be construed as reasoning that operates only syntactically.

References

  • Arsac, G. (1996). Un cadre d’étude du raisonnement mathématique [A mathematical reasoning framework]. In D. Grenier (Ed.), Séminaire didactique et technologies cognitives en mathématiques. Grenoble: IMAG.

  • Artzt, A. F. (1999). Mathematical reasoning during small-group problem solving. In L. V. Stiff (Ed.), Developing mathematical reasoning in grades K-12. (1999 yearbook, pp. 115–127). Reston, VA: NCTM.

  • Balacheff, N. (1988). Une étude des processus de preuve en mathématiques chez des élèves du collège [A study of students’ proving processes in junior high school]. (Unpublished doctoral dissertation). Université de Grenoble 1, France.

  • Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: An essay on the case of proof. ZDM, 40(3), 501–512.

    Article  Google Scholar 

  • Cabassut, R. (2005). Démonstration, raisonnement et validation dans l’enseignement secondaire des mathématiques en France et en Allemagne [Proof, reasoning and validation in mathematics secondary teaching in France and Germany]. (Unpublished doctoral dissertation). Université Paris Diderot, France.

  • Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D. A., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1), 55–72.

    Article  Google Scholar 

  • Cobb, P. (2007). Putting philosophy to work. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 3–38). Charlotte: Information Age.

  • deVilliers, M. (1999). The role and function of proof with Sketchpad. In M. deVilliers (Ed.), Rethinking proof with Sketchpad (pp. 3–10). Emeryville: Key Curriculum.

  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (pp. 25–41). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la démonstration [Structure of deductive reasoning and learning of proof]. Educational Studies in Mathematics, 22(3), 233–261.

  • Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissages intellectuels [Semiosis and human thinking: Semiotic registers and intellectual learning]. Berne, CH: Lang.

  • Hanna, G., & Jahnke, H. (1996). Proof and proving. In A. Bishop et al. (Eds.), International handbook of mathematics education (pp. 877–908). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 805–842). Charlotte: Information Age.

    Google Scholar 

  • Jeannotte, D. (2015). Raisonnement mathématique: proposition d'un modèle conceptuel pour l'apprentissage et l'enseignement au primaire et au secondaire [Mathematical reasoning: a conceptual model for learning and teaching at the primary and secondary levels of schooling]. (Unpublished doctoral dissertation). Université du Québec à Montréal, Canada.

  • Lee, L.F. (1997). La compréhension algébrique: La recherche d’un modèle dans la communauté d'éducation mathématique [Algebraic understanding: The search for a model in the mathematics education community]. (Unpublished doctoral dissertation). Université du Québec à Montréal, Canada.

  • Legendre, R. (2005). Dictionnaire actuel de l’éducation [Dictionary of education] (3rd ed.). Montréal: Guérin.

  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255–276.

    Article  Google Scholar 

  • Maher, C. (2009). Children’s reasoning: Discovering the idea of mathematical proof. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades (pp. 120–132). New York: Routledge.

    Google Scholar 

  • Mariotti, M.A. (2005). Proof and proving in algebra. Retrieved from http://www.lettredelapreuve.org/OldPreuve/Newsletter/06Hiver/Mariotti-GARME.pdf

  • Mason, J. (1982). Thinking mathematically. London: Addison-Wesley.

    Google Scholar 

  • Mason, J. (2001). Questions about mathematical reasoning and proof in schools. Opening address. QCA Conference, UK. Retrieved from http://xtec.cat/centres/a8005072/articles/proof_and_reasoning.pdf

  • Meyer, M. (2010). Abduction - a logical view for investigating and initiating processes of discovering mathematical coherences. Educational Studies in Mathematics, 74(2), 185–205.

    Article  Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics. Reston: NCTM.

    Google Scholar 

  • OCDE. (2006). Compétences en sciences, lecture et mathématiques: Le cadre d’évaluation de PISA 2006 [Competencies in sciences, reading and mathematics: PISA 2006 evaluation framework]. Paris: OCDE.

  • Pedemonte, B. (2002). Étude didactique et cognitive des rapports de l’argumentation et de la démonstration dans l'apprentissage des mathématiques [Didactical and cognitive study of argumentation and proof in the learning of mathematics]. (Unpublished doctoral dissertation). Université Joseph Fourier, Grenoble, France.

  • Pedemonte, B., & Reid, D. A. (2011). The role of abduction in proving processes. Educational Studies in Mathematics, 76(3), 281–303.

    Article  Google Scholar 

  • Peirce, C. S. (n.d.). The collected papers of Charles Sanders Peirce (Electronic ed.). Charlottesville: InteLex Past Master. Retrieved from http://library.nlx.com/xtf/view?docId=peirce/peirce.00.xml;chunk.id=div.peirce.pmpreface.1;toc.depth=1;toc.id=div.peirce.pmpreface.1;brand=default&fragment_id=.

  • Pólya, G. (1968). Mathematics and plausible reasoning (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 33(1), 5–29.

    Article  Google Scholar 

  • Reid, D. A. (2003). Forms and uses of abduction. In M. A. Mariotti (Ed.), Proceedings of 3rd Conference of European Society for Research in Mathematics Education (pp. 1–10). Bellaria: CERME.

  • Reid, D. A. (2010). Proof in mathematics education. Rotterdam: Sense.

    Google Scholar 

  • Rivera, F. D. (2008). On the pitfalls of abduction: Complicities and complexities in patterning activity. For the Learning of Mathematics, 28(1), 17–25.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York: Cambridge University Press.

    Book  Google Scholar 

  • Sfard, A. (2012). Introduction: Developing mathematical discourse - some insights from communicational research. International Journal of Educational Research, 51-52, 1–9.

    Article  Google Scholar 

  • Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational Studies in Mathematics, 30(2), 197–210.

    Article  Google Scholar 

  • Steen, L. (1999). Twenty questions about mathematical reasoning. In L. V. Stiff (Ed.), Developing mathematical reasoning in grades K-12. (1999 Yearbook, pp. 270–285). Reston: NCTM.

  • Stylianides, G. J. (2008). An analytic framework of reasoning-and-proving. For the Learning of Mathematics, 28(1), 9–16.

    Google Scholar 

  • Toerner, G., & Arzarello, F. (2012). Grading mathematics education research journals. Newsletter of European Mathematical Society (December, issue #86), 52-54. Retrieved from https://www.ems-ph.org/journals/newsletter/pdf/2012-12-86.pdf

  • Toulmin, S. E. (2007). The uses of argument. New York: Cambridge University Press.

    Google Scholar 

  • Van der Maren, J.-M. (1996). Méthodes de recherche pour l’éducation [Educational research methods] (2nd ed.). Montréal: Les presses de l’Université de Montréal.

  • Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 227–236). Reston: NCTM.

Download references

Acknowledgments

The authors express their appreciation to the Social Sciences and Humanities Research Council of Canada for its financial support of this research and to the reviewers for their helpful comments. In addition, the first author wishes to thank the members of her doctoral research committee for their academic support and encouragement during the years of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Jeannotte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeannotte, D., Kieran, C. A conceptual model of mathematical reasoning for school mathematics. Educ Stud Math 96, 1–16 (2017). https://doi.org/10.1007/s10649-017-9761-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-017-9761-8

Keywords

Navigation