Artigue, M. (coord.) (2009). Integrative Theoretical Framework–Version C. Deliverable 18,

*ReMath Project*.

www.remath.cti.gr
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. *International Journal of Computers for Mathematics Learning, 7*(3), 245–274.

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), *Handbook of international research in mathematics education (second revised edition* (pp. 746–783). Mahwah: Lawrence Erlbaum.

Bottino, R. M., & Kynigos, C. (2009). Mathematics education & digital technologies: Facing the challenge of networking European research teams. *International Journal of Computers for Mathematical Learning, 14*(3), 203–215.

Brousseau, G. (1997). *The theory of didactic situations in mathematics*. Dordrecht: Kluwer.

Cerulli, M., Trgalová, J., Marraci, M., Psycharis, G., & Georget, J.-P. (2008). Comparing theoretical frameworks enacted in experimental research: TELMA experience.

*Zentralblatt fur Didaktik der Mathematik, 40*(2), 201–213.

CrossRefChevallard, Y. (1999). L'analyse des pratiques enseignantes en théorie anthropologique du didactique [Analysing teaching practices within the anthropologic theory of didactics]. *Recherches en didactique des mathématiques, 19*(2), 221–266.

Cuoco, A. (2002). Thoughts on reading Artigue's “Learning mathematics in a CAS environment.

*International Journal of Computers for Mathematical Learning, 7*(3), 293–299.

CrossRefGallou-Dumiel, E. (1987). Symétrie orthogonale et micro-ordinateur [Geometrical reflection and micro-computer]. *Recherches en didactique des mathématiques, 8*(1–2), 5–59.

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. *International Journal of Computers for Mathematics Learning, 3*(3), 195–227.

Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: Design and construction in learning, teaching and developing mathematics. *ZDM, The International Journal of Mathematics Education, 42*, 63–76.

Jackiw, N. (2010). Attention to detail; Broadening our design language. In C. Hoyles & J. B. Lagrange (Eds.), *Mathematics education and technology: Rethinking the terrain* (pp. 431–433). New York: Springer.

Kahane, J. (coord.) (2002) L'enseignement des sciences mathématiques [Teaching mathematical sciences]. Centre National de Documentation Pédagogique, Odile Jacob, Paris.

Kieran, C. (2004). The Core of Algebra: Reflections on its main activities. In K. Stacey (Ed.),

*The future of teaching and learning of algebra: 12th ICMI Study* (pp. 21–24). Dordrecht: Kluwer.

CrossRefKieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In: Lester (Ed.), *Second handbook of research on mathematics teaching and learning* (pp. 707–762). Greenwich, CT: Information Age Publishing.

Kieran, C., & Drijvers, P. (2007). The Co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of cas use in secondary school algebra. *International Journal of Computers for Mathematical Learning, 11*(2), 205–263.

Kynigos, C., & Psycharis, G. (2009). The role of context in research involving the design and use of digital media for the learning of mathematics: Boundary objects as vehicles for integration. *International Journal of Computers for Mathematical Learning, 14*(3), 265–298.

Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry.

*International Journal of Computers for Mathematical Learning, 6*, 283–317.

CrossRefLagrange, J. B. (1999). Complex calculators in the classroom: Theoretical and practical reflections on teaching precalculus. *International Journal of Computers for Mathematical Learning, 4*(1), 51–81.

Lagrange, J. B. (2000). L'intégration d'instruments informatiques dans l'enseignement : Une approche par les techniques [Integrating computer tools into mathematics teaching: The role of "techniques"]. *Educational Studies in Mathematics, 43*(1), 1–30.

Lagrange, J. B. (2013). Analyzing teacher classroom use of technology: Anthropological Approach and Activity Theory. *International Journal for Technology in Mathematics Education, 20*(1), 33–37.

Lagrange, J.-B., & Artigue, M. (2009). Students' activities about functions at upper secondary level: A grid for designing a digital environment and analysing uses. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), *Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education* (Vol. 3, pp. 465–472). Thessaloniki, Greece: PME.

Lagrange, J.-B., Artigue M., Laborde C., & Trouche L. (2003). Technology and mathematics éducation: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & K. S. F. Leung (Eds.), *Second international handbook of mathematics education*, Part 1 (pp. 237–269). Dordrecht: Kluwer Academic Publishers.

Le Feuvre, B., Meyrier, X., & Lagrange, J. B. (2010). Apprendre des notions mathématiques, géographiques et algorithmiques à l'aide d'un environnement de navigation 3D au-dessus de la Grèce [Learning mathematics, geography and algorithmics by way of a 3D virtual navigator over Greece]. *Repères IREM, 81*, 29–48.

Lave, J. (1988).

*Cognition in practice*. Cambridge: Cambridge University Press.

CrossRefNunes, T., Schliemann, A. D., & Carraher, D. W. (1993). *Street mathematics and school mathematics*. Cambridge: Cambridge University Press.

Maracci, M., Cazes, C., Vandebrouck, F., & Mariotti, M. A. (2013). Synergies between theoretical approaches to mathematics education with technology: A case study through a cross-analysis methodology.

*Educational Studies in Mathematics, 84*(3), 461–485.

CrossRefMarkopoulos, C., Kynigos, C., Alexopoulou, E., & Koukiou, A. (2009). Mathematisations while navigating with a geo-mathematical microworld. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), *Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education* (Vol. 4, pp. 97–104). Thessaloniki, Greece: PME.

Minh, T. K. (2012). Learning about functions with the help of technology: Students' instrumental genesis of a geometrical and symbolic environment. In T. Y. Tso (Ed.), *Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education* (Vol. 3, pp. 217–224). Taipei, Taiwan: PME.

Monaghan, J. (2009). People and theories. Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010

www.inrp.fr/editions/cerme6
Monaghan, J. (2005). Computer algebra. Instrumentation and the anthropological approach. *International Journal for Technology in Mathematics Education, 14*(2), 63–71.

Sriraman, B., & English, L. (Eds.). (2010). *Theories of mathematics education: Seeking new frontiers*. Berlin/Heidelberg: Springer Science.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), *Research design in mathematics and science education* (pp. 267–307). Hillsdale, NJ: Erlbaum.

Tall, D. (1996). Functions and calculus. In A. J. Bishop et al. (Eds.), *International handbook of mathematics education* (pp. 289–325). Dordrecht: Kluwer.

Van Oers, B. (1998). From context to contextualizing.

*Learning and Instruction, 8*(6), 473–488.

CrossRefVerillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. *European Journal of Psychology of Education, 9*(3), 77–101.