Skip to main content
Log in

The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with one aspect of the endeavor to generate a theory of the development of mathematical thinking of children in the early years ages 3 to 10. By comparing two scenes, one from preschool and one from a first grade mathematics class, the relationship between diagrammatic and narrative argumentations among children and teachers is reconstructed and related to possible developmental trajectories of mathematical thinking. Theoretically, I attempt to implement these developmental paths in a concept of an “Interactional Niche in the Development of Mathematical Thinking.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The empirical background is the project “early Steps in Mathematics Learning” (erStMaL) that is part of the research activities of the “Center for Individual Development and Adaptive Education” (IDeA) located in Frankfurt am Main, Germany. It is funded for 6 years, beginning in July 2008; http://www.idea-frankfurt.eu/homepage/idea-projects/projekt-erstmal.

  2. In the English-speaking world, the word “kindergarten” usually means an institution in which children spend just one year before entering primary school from ages 5 to 6. In Germany, the word “Kindergarten” designates the institution, which children visit from ages 3 to 6 before they start primary school. In the USA one might use the abbreviation “pre-k”. In its organization and administration, the German Kindergarten is separate from primary schools. In order to remind the reader that my data originate from a German institution, I consequently write this word with a capital letter, as one usually does for nouns in German. “Early Kindergarten age” addresses an age group between age 3 and 4. Usually the age of third graders is between 8.5 and 9.5.

  3. Surprisingly, Ernest (2010) does not mention this research tradition that usually is subsumed under the name “micro-sociology.” For its reception in mathematics education, see Bauersfeld, 1995; Krummheuer, 1995; Voigt, 1995.

  4. For more details, see Krummheuer, 2011a.

  5. Super and Harkness (1986) defined “their” development niche by the three components ”the physical and social settings in which the child lives,” “culturally regulated customs of child care and rearing” and “the psychology of the caretakers” (Super and Harkness 1986, p. 552). They conducted anthropological studies without focusing on the situational aspects of social interaction processes.

  6. Leeway taken here in the colloquial meaning of “room for freedom of action” (see Webster, 1983, p. 1034), originally the notion of “Partizipationsspielraum” in the book by Brandt (2004).

  7. The chipmunk, a stuffed animal, is the mascot of the project erStMaL.

  8. For the notion “didactical design pattern” see, for example, Acar Bayraktar, Hümmer, Huth, Münz, & Reiman, (2011, p. 17ff.) and below Section 4.

  9. Here starts the transcript that is printed in the Appendix. Numbers in angle brackets refer to the numbered lines in the transcript.

  10. The transcript is printed in the Appendix. Numbers in angle brackets refer to the numbered lines in the transcript.

References

  • Acar Bayraktar, E., Hümmer, A.-M., Huth, M., Münz, M., & Reiman, M. (2011). Forschungsmethodischer Rahmen der Projekte erStMaL und MaKreKi [The research methods of the projects erStMaL and MaKreKi]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 11–24). New York: Waxmann.

    Google Scholar 

  • Acar Bayraktar, E., & Krummheuer, G. (2011). Die Thematisierung von Lagebeziehungen und Perspektiven in zwei familialen Spielsituationen. Erste Einsichten in die Struktur „interaktionaler Nischen mathematischer Denkentwicklung“ im familialen Kontext [The thematization of location and perspective in two familial play situations. First insights in the structure of "interactional niches in the development of mathematical thinking" in a familial context]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 135–174). New York: Waxmann.

    Google Scholar 

  • Anderson, A., Anderson, J., & Thauberg, C. (2008). Mathematics learning and the teaching in the early years. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 95–132). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Bauersfeld, H. (1995). "Language games" in the mathematics classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271–291). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bauersfeld, H., & Seeger, F. (2003). Semiotische Wende–Ein neuer Blick auf das Sprachspiel von Lehren und Lernen [Semiotic change—a new view on the language game of teaching and learning]. In M. Hoffmann (Ed.), Mathematik verstehen–Semiotische Perspektiven (pp. 20–33). Hildesheim: Franzbecker.

    Google Scholar 

  • Blumer, H. (1969). Symbolic interactionism. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Brandt, B. (2000a). Interaktionskompetenz im Mathematikunterricht der Grundschule [Interactional competence in the primary mathematics classroom]. In A. Kaiser & C. Röhner (Eds.), Kinder im 21. Jahrhundert. Münster: Lit. Verlag.

  • Brandt, B. (2000b). Zur Rekonstruktion von Partizipationsformen: Jarek in verschiedenen Lernsituationen [The reconstruction of forms of participation: Jarek in different learning situations]. In O. Jaumann-Graumann & W. Köhnlein (Eds.), Lehrerprofessionalität–Lehrerprofessionalisierung (pp. 166–172). Heilbronn: Klinkhardt.

    Google Scholar 

  • Brandt, B. (2004). Kinder als Lernende. Partizipationsspielräume und -profile im Klassenzimmer. [Children as learners. Leeways of participation and profiles of participation in the classroom]. Frankfurt a. M: Peter Lang.

    Google Scholar 

  • Brandt, B. & Krummheuer, G. (1999). Verantwortlichkeit und Originalität in mathematischen Argumentationsprozessen der Grundschule [Responsibility and originality in processes of mathematical argumentation in primary schools]. Mathematica Didactica, 21(1).

  • Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bruner, J. (1990). Acts of meaning. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Carruthers, E., & Worthington, M. (2006). Children's mathematics: Making marks, making meaning. Los Angeles: Sage.

    Google Scholar 

  • Civil, M. (2006). Working towards equity in mathematics education: A focus on learners, teachers, and parents. 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Vol. 1 (pp. 30–50). Mérida, Mexico: Universidad Pedagógica Nacional.

    Google Scholar 

  • Clements, D. H., & Sarama, J. (2005). Early childhood mathematics learning. In D. H. Clements & J. Sarama (Eds.), Second handbook of research on mathematics teaching and learning (pp. 461–555). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Conroy, F. (1988). Body and soul. New York: Delta Book.

    Google Scholar 

  • Dörfler, W. (2006). Diagramme und Mathematikunterricht [Diagrams and the mathematics classroom]. Journal für Mathematikdidaktik, 27(3/4), 200–219.

    Google Scholar 

  • Ernest, P. (2010). Reflections on theories of learning. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 39–46). Berlin: Springer.

    Chapter  Google Scholar 

  • Fetzer, M. (2007). Interaktion am Werk. Eine Interaktionstheorie fachlichen Lernens, entwickelt am Beispiel von Schreibanlässen im Mathematikunterricht der Grundschule [Interaction at work. An interactional theory of content-based learning, exemplarily developed from opportunities of writing in the primary mathematics classroom]. Bad Heilbrunn: Klinkhardt.

  • Fetzer, M. (2010). Reassambling the social classroom. Mathematikunterricht in einer Welt der Dinge [The mathematics classroom in a world of things]. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik. Götz Krummheuer zum 60. Geburtstag (pp. 267–290). New York: Waxmann.

    Google Scholar 

  • Garfinkel, H. (1972). Remarks on ethnomethodology. In J. J. Gumperz & D. Hymes (Eds.), Directions in sociolinguistics: The ethnography of communication. New York: Holt.

    Google Scholar 

  • Ginsburg, H. P., & Ertle, B. (2008). Knowing the mathematics in early childhood mathematics. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 45–66). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Hynes-Berry, M. (2012). Don't leave the story in the book: Using literature to guide inquiry in early childhood classrooms. New York: Teachers College Press.

    Google Scholar 

  • Kadunz, G. (2006). Schrift und Diagramm [Inscription and diagram]. Journal für Mathematikdidaktik, 27(3/4), 220–239.

    Google Scholar 

  • Karmiloff-Smith, A. (1996). Beyond modularity: A developmental perspective on cognitve science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Klann-Delius, G. (2008). Spracherwerb [Acquisition of language]. Stuttgart: J. B. Metzler.

    Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Krummheuer, G. (1997). Narrativität und Lernen. Mikrosoziologische Studien zur sozialen Konstitution schulischen Lernens [Narrativity and learning. Micorsociological studies about the social constitution of learning at school]. Weinheim: Deutscher Studien Verlag.

    Google Scholar 

  • Krummheuer, G. (1999). The narrative character of argumentative mathematics classroom interaction in primary education. Proceedings of the European Society for Research in Mathematics Education I (pp. 339–349). Osnabrück, Germany: Forschungsinstitut für Didaktik der Mathematik.

  • Krummheuer, G. (2000a). Mathematics learning in narrative classroom cultures: Studies of argumentation in primary mathematics education. For the Learning of Mathematics, 20(1), 22–32.

    Google Scholar 

  • Krummheuer, G. (2000b). Studies of argumentation in primary mathematics education. Zentralblatt für Didaktik der Mathematik, 32(5), 155–161.

    Article  Google Scholar 

  • Krummheuer, G. (2009). Inscription, narration and diagrammatically based argumentation: The narrative accounting practices in the primary school mathematics lesson. In M.-W. Roth (Ed.), Mathematical representation at the interface of the body and culture (pp. 219–243). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Krummheuer, G. (2011a). Die empirisch begründete Herleitung des Begriffs der “Interaktionalen Nische mathematischer Denkentwicklung” (NMD) [The empirically grounded derivation of the concept "Interactional niche in the development of mathematical thinking" (NMT)]. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am "Center for Individual Development and Adaptive Education." Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi, Bd. 1 (pp. 25–90). New York: Waxmann.

    Google Scholar 

  • Krummheuer, G. (2011b). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (ZDM), 43(1/2), 81–90.

    Article  Google Scholar 

  • Krummheuer, G. (2012a). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “interactional Niche in the development of Mathematical Thinking" (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338.

    Article  Google Scholar 

  • Krummheuer, G. (2012b). The relationship between cultural expectation and the local realization of a mathematics learning environment. A mathematics education perspective on early mathematics learning in the strain between the poles of instruction and construction. Frankfurt am Main. Available from http://cermat.org/poem2012/ Accessed 19 January 2013

  • Latour, B. (2005). Reassembling the social. An introduction to the Actor-Network-Theory. Oxford: Oxford Universtiy Press.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lave, W., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lorenz, J. H. (2012). Kinder begreifen Mathematik: Frühe mathematische Bildung und Förderung [Children comprehend mathematics. Early mathematics education and support]. Stuttgart: Kohlhammer.

    Google Scholar 

  • Morgan, C. (1998). Writing mathematically: The discourse of investigation. London: Falmer Press.

    Google Scholar 

  • Peirce, C. S. (1978). Collected papers of Charles Sanders Peirce. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Roth, W.-M., & Mc Ginn, M. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.

    Article  Google Scholar 

  • Schreiber, C. (2010). Semiotische Prozess-Karten. Chatbasierte Inskriptionen in mathematischen Problemlöseprozessen [Semotic process-maps. Inscriptions in processes of mathematical problem solving based on chats]. New York: Waxmann.

    Google Scholar 

  • Schütz, A., & Luckmann, T. (1979). Strukturen der Lebenswelt [Structures of the everyday world]. Frankfurt a. M: Suhrkamp.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Siegler, R. S. (2000). The rebirth of children's learning. Child Development, 71(1), 26–35.

    Article  Google Scholar 

  • Super, C. M., & Harkness, S. (1986). The developmental niche: A conceputalization at the interface of child and culture. International Journal of Behavioral Development, 9, 545–569.

    Article  Google Scholar 

  • Tiedemann, K. (2010). Support in mathematischen Eltern-Kind-Diskursen: funktionale Betrachtung einer Interaktionsroutine [Support in mathematical discourses between parents and child: functional consideration of an interactional routine]. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik (pp. 149–175). New York: Waxmann.

    Google Scholar 

  • Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • van Oers, B. (1997). On the narrative nature of young children's iconic representations: Some evidence and implications. International Journal of Early Years Education, 5(3), 237–245.

    Article  Google Scholar 

  • Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms. In P. Cobb, & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 163–201).

  • Wagner-Willi, M., et al. (2007). Rituelle Interaktionsmuster und Prozesse des Erfahrungslernens im Mathematikunterricht [Ritual patterns of interaction and learning mathematics by experience]. In C. Wulf, B. Althans, M. Blaschke, N. Ferrin, & M. Göhlich (Eds.), Lernkulturen im Umbruch. Rituelle Praktiken in der Schule, Medien, Familie und Jungend. Wiesbaden: VS Verlag für Sozialwissenschaften.

    Google Scholar 

  • Webster, N. (1983). In J. L. McKechnie (Ed.), Webster's new twentieth century dictionary. Unabridged (2nd ed.). New York: Simon and Shuster.

    Google Scholar 

  • Wertsch, J. V., & Tulviste, P. (1992). L. S. Vygotsky and contemporary developmental psychologiy. Journal of Developmental Psychology, 28(4), 548–557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Krummheuer.

Appendix: the two transcripts

In the original German transcript, we do not use the standard interpunctuation, and denote speaking pauses, raisings of the pinch, and so forth. In the English translation, we do not use these paralinguistic notations. Word order and tone of voice differ too much between German and English.

Appendix: the two transcripts

figure b

The place value problem

figure c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krummheuer, G. The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educ Stud Math 84, 249–265 (2013). https://doi.org/10.1007/s10649-013-9471-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-013-9471-9

Keywords

Navigation