Austin, D. (2007). Pulling digits out of pi.

*Feature column*:

*Montly Essays on Mathematical Topics*.

http://www.ams.org/samplings/feature-column/fcarc-pi. Accessed 18 Sept 2010

Ball, D. (1988). *Knowledge and reasoning in mathematical pedagogy*: *examining what prospective teachers bring to teacher education*. Unpublished dissertation, Michigan State University, East Lansing.

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education.

*The Elementary School Journal, 90*(4), 449–466.

CrossRefBaumgart, J. K. (1969). *Historical topics for the mathematics classroom*. Reston, VA: National Council of Teachers of Mathematics.

Beckmann, S. (2005). *Mathematics for elementary teachers*. Boston: Addison Wesley.

Beckmann, S. (2008). *Mathematics for elementary teachers* (2nd ed.). Boston, MA: Addison Wesley.

Behr, M., Harel, G., Post, T., & Lesh, R. (1993). Rational numbers: Toward a semantic analysis—emphasis on the operator construct. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), *Rational numbers: An integration of research* (pp. 13–47). Hillsdale: Lawrence Erlbaum.

Berlinghoff, W. P., & Gouvea, F. Q. (2004). *Math through the ages, Expanded edition*. Washington, DC: Mathematical Association of America, Farmington, ME: Oxton House Publishers.

Cajori, F. (1928). *A history of mathematical notation—Notations in elementary mathematics*. Illinois: The Open Court Publishing Company.

Carpenter, T., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). *Children’s mathematics: Cognitively guided instruction*. Portsmouth: Heinemann.

Childs, L. (1995).

*A concrete introduction to higher algebra*. New York: Springer.

CrossRefClark, K. M. (2011). History of mathematics: illuminating understanding of school mathematics concepts for prospective mathematics teachers.

*Educational Studies in Mathematics*.

http://www.springerlink.com/content/k5mv6814246755l5/. Accessed 26 Nov 2011

Dantzig, T. (1954). *Number: The language of science*. New York: Macmillan.

Dorier, J. (1998). The role of formalism in the teaching of the theory of vector spaces. *Linear Algebra and Its Application, 275–276*, 114–160.

Dorier, J., Robert, A., Robinet, J., & Rogalski, M. (2000). On a research programme concerning the teaching and learning of linear algebra in the first-year of a French science university.

*International Journal of Mathematical Education in Science and Technology, 31*(1), 27–35.

CrossRefErlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. *Journal of Children*’*s Mathematical Behavior*, *1*(2), 7–26. Reprinted in Carpenter, T. P., Dossey, J. A., & Koehler, J. L. (Eds.). (2004). *Classics in mathematics education research*. Reston, VA: National Council of Teachers of Mathematics.

Even, R. (2008). Facing the challenge of educating educators to work with practicing mathematics teachers. In B. Jaworski & T. Wood (Eds.), *The international handbook of mathematics teacher education, vol 4. The mathematics teacher educator as a developing professional* (Vol. 4, pp. 57–74). Rotterdam: Sense.

Fauvel, J., & van Maanen, J. (Eds.). (2000). *History in mathematics education: The ICMI study*. Dordrecht: Kluwer.

Fischbein, E., Jehiam, R., & Cohen, C. (1995). The concept of irrational number in high-school students and prospective teachers.

*Educational Studies in Mathematics, 29*, 29–44.

CrossRefHart, K. (1987). Children’s mathematics frameworks: part 2. What are equivalent fractions? *Mathematics in School, 16*(4), 5–7.

Heath, T. L. (1956). *The thirteen books of Euclid’s elements, vols. 1–3* (2nd ed.). New York: Dover.

Jankvist, J. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education.

*Educational Studies in Mathematics, 71*, 235–261.

CrossRefKerslake, D. (1986). *Fractions: Children’s strategies and errors*. Windsor: NFER-Nelson.

Kieren, T. E. (1992). Rational and fractional numbers as mathematical and personal knowledge: Implications for curriculum and instruction. In G. Leinhardt, R. Putnam, & R. A. Hattrup (Eds.), *Analysis of arithmetic for mathematics teaching* (pp. 323–372). Hillsdale: Erlbaum.

Klein, J. (1968). *Greek mathematical thought and the origin of algebra*. Cambridge: M.I.T. Press.

Lamon, S. L. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco & F. Curcio (Eds.), *The roles of representations in school mathematics* (2001), Yearbook, Reston: NCTM, (pp. 146–165).

Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. K. Lester (Ed.), *Second handbook of research on mathematics teaching and learning* (2007), Information Age Publishing, Charlotte NC, (pp. 629–667).

Ma, L. (1998). *Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States*. Mahwah: Lawrence Erlbaum.

Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge.

*Journal for Research in Mathematics Education, 21*(1), 16–32.

CrossRefMack, N. K. (1993). Learning rational numbers with understanding. The case of informal knowledge. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), *Rational numbers: An integration of research* (pp. 85–105). Hillsdale: Lawrence Erlbaum.

Newton, K. J. (2008). An extensive analysis of elementary preservice teachers’ knowledge of fractions.

*American Educational Research Journal, 45*(4), 1080–1110.

CrossRefOsana, H. P., & Royea, D. A. (2011). Obstacles and challenges in preservice teachers’ explorations with fractions: A view from a small-scale intervention study.

*The Journal of Mathematical Behavior, 30*, 333–352.

CrossRefParker, T. H., & Baldridge, S. J. (2003). *Elementary mathematics for teachers*. Okemos: Sefton-Ash Publishing.

Pitkethly, A., & Hunting, R. (1996). A review of recent research in the area of initial fraction concepts.

*Educational Studies in Mathematics, 30*, 5–38.

CrossRefPogliani, L., Randic, M., & Trinajstic, N. (1998). Much ado about nothing—an introductory inquiry about zero.

*International Journal of Mathematical Education in Science and Technology, 29*, 729–744.

CrossRefPost, T. R., Harel, G., Behr, M. J., & Lesh, R. (1988). Intermediate teachers knowledge of rational number concepts. In E. Fennema, T. P. Carpenter, & S. J. Lamon (Eds.), *Integrating research on teaching and learning mathematics* (pp. 177–198). New York: State University of NY Press.

Post, T. R., Cramer, K. A., Lesh, R., Harel, G., & Behr, M. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), *Rational numbers: An integration of research* (pp. 327–362). Hillsdale: Lawrence Erlbaum Associates Publishers.

Radford, M. (1995). Before the other unknowns were invented: Didactic inquires on the method and programs of medieval Italian algebra. *For the Learning of Mathematics, 15*(3), 28–38.

Radford, M., Barolini-Bussi, M. G., Bekken, O., Boero, P., Dorier, J., Katz, V., Rogers, L., Sierpinska, A., & Vasco, C. (2002). Historical formation and student understanding of mathematics.

*New ICMI Study Series, 6*, 143–170.

CrossRefRizvi, N. F., & Lawson, M. J. (2007). Prospective teachers’ knowledge: Concept of division. *International Education Journal, 8*(2), 377–392.

Seife, C. (2000). *Zero, the biography of a dangerous idea*. New York: Penguin.

Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives.

*The Journal of Mathematical Behavior, 14*, 15–39.

CrossRefSmith, D. E. (1923). *History of mathematics, volume I*. New York: Dover.

Smith, D. E. (1925). *History of mathematics, volume II*. New York: Ginn & Company.

Sowder, J. T., Bedzuk, N., & Sowder, L. K. (1993). Using principles from cognitive psychology to guide rational number instruction for prospective teachers. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), *Rational numbers: An integration of research* (pp. 239–259). Hillsdale: Lawrence Erlbaum.

Sowder, J., Philipp, R., Armstrong, B., & Schappelle, B. (1998). *Middle-grade teachers’ mathematical knowledge and its relationship to instruction: A research monograph*. Albany: State University of New York Press.

Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions.

*Learning and Instruction, 14*, 503–518.

CrossRefStreefland, L. (1993). Fractions: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), *Rational numbers: An integration of research* (pp. 289–325). Hillsdale: Lawrence Erlbaum Associates Publishers.

Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions.

*Journal for Research in Mathematics Education, 31*(1), 5–25.

CrossRefTirosh, D., Fischbein, E., Graeber, A. O., & Wilson, J. W. (1999). Prospective elementary teachers’ conceptions of rational numbers.

http://jwilson.coe.uga.edu/texts.folder/tirosh/pros.el.tchrs.html. Accessed 11 Jun 2004

Vamvakoussi, X., & Vosniadou, S. (2007). How many numbers are there in a rational number interval? Constraints, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), *Reframing the conceptual change approach in learning and instruction* (pp. 265–282). Amsterdam: Elsevier.

Weil, A. (1978). History of mathematics: Why and how. In *Proceedings of the International Congress of Mathematicians*, *Helsinki* (pp. 227–236) 1978. Helsinki: Academia Scientiarum Fennica.

Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. *Canadian Journal of Science, 9*(1), 5–28.

Wilson, S., Floden, R. E., & Ferrini-Mundy, J. (2001). *Teacher preparation research: Current knowledge, gaps, and recommendations*. Seattle: Center for the Study of Teaching and Policy.

Wu, H. (2010). Learning school algebra in the U.S. In Y. Li & Z. Huan (Eds.), *Mathematics education: Perspectives and practices in the East and West*. Special Issue of *Mathematics Bulletin* (pp. 101–114). Beijing, China: Chinese Mathematical Society, Beijing Normal University.

Zhou, Z., Peverly, S. T., & Xin, T. (2006). Knowing and teaching fractions: A cross-cultural study of American and Chinese mathematics teachers.

*Comtemporary Educational Psychology, 31*, 438–457.

CrossRef