Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special?
Journal of Teacher Education, 59(5), 389–407.
CrossRefBingolbali, E., & Monaghan, J. (2008). Concept image revisited.
Educational Studies in Mathematics, 68, 19–35.
CrossRefBiza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean geometry to analysis.
Research in Mathematics Education, 10(1), 53–70.
CrossRefBiza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher knowledge in situation-specific contexts.
Journal of Mathematics Teacher Education, 10, 301–309.
CrossRefBiza, I., Nardi, E., & Zachariades, T. (2009). Teacher beliefs and the didactic contract on visualisation. For the Learning of Mathematics, 29(3), 31–36.
Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.
Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures: Un example concret, celui de la tangente [Learning with and in contradiction to previous knowledge: A concrete example, that of tangent]. Recherches en Didactiques des mathématiques, 15(1), 7–47.
Chevallard, Y. (1985). La transposition didactique [The didactic transposition]. Grenoble: La Pensée Sauvage Éditions.
Cook, S. D., & Brown, J. S. (1999). Bridging epistemologies: The generative dance between organizational knowledge and organizational knowing.
Organization Science, 10(4), 381–400.
CrossRefEvens, H., & Houssart, J. (2004). Categorizing pupils' written answers to a mathematics test question: 'I know but I can't explain'.
Educational Research, 46(3), 269–282.
CrossRefFreeman, J. B. (2005a). Systematizing Toulmin’s warrants: An epistemic approach.
Argumentation, 19(3), 331–346.
CrossRefFreeman, J. B. (2005b). Acceptable premises: An epistemic approach to an informal logic problem. Cambridge, UK: Cambridge University Press.
Giannakoulias, E., Mastoridis, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims.
The Journal of Mathematical Behavior, 29, 160–168.
CrossRefHarel, G., & Sowder, L. (2007). Towards comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), The second handbook of research on mathematics teaching and learning (pp. 805–842). USA: NCTM.
Herbst, P., & Chazan, D. (2003). Exploring the practical rationality of mathematics teaching through conversations about videotaped episodes: The case of engaging students in proving. For the Learning of Mathematics, 23(1), 2–14.
Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: Results from California's mathematics professional development institutes.
Journal for Research in Mathematics Education, 35(5), 330–351.
CrossRefHoyles, C., & Küchemann, D. (2002). Students' understanding of logical implication.
Educational Studies in Mathematics, 51, 193–223.
CrossRefInglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses.
Research in Mathematics Education, 10(2), 119–133.
CrossRefInglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification.
Educational Studies in Mathematics, 66, 3–21.
CrossRefJacobs, J. K., & Morita, E. (2002). Japanese and American teachers' evaluations of videotaped mathematics lessons.
Journal for Research in Mathematics Education, 33(3), 154–175.
CrossRefKennedy, M. M. (2002). Knowledge and teaching.
Teachers & Teaching, 8(3/4), 355–370.
CrossRefKnuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof.
Journal for Research in Mathematics Education, 33(5), 379–405.
CrossRefKrummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions.
The Journal of Mathematical Behavior, 26(1), 60–82.
CrossRefLampert, M. (1985). How do teachers manage to teach? Perspectives on problems in practice. Harvard Educational Review, 55(2), 178–194.
Leatham, K. R. (2006). Viewing mathematics teachers' beliefs as sensible systems.
Journal of Mathematics Teacher Education, 9, 91–102.
CrossRefLeder, G., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs: A hidden variable in mathematics education? Dordrecht: Kluwer.
Miyakawa, T., & Herbst, P. (2007). Geometry teachers' perspectives on convincing and proving when installing a theorem in class. In T. Lamberg & L. R. Wiest (Eds.), 29th Annual Meetings of PME-NA (pp. 366–373). Lake Tahoe, NV: University of Nevada, Reno.
Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration [Some tools for the cognitive analysis of the relation between argumentation and demonstration]. Recherches en Didactique des Mathématiques, 25, 313–348.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?
Educational Studies in Mathematics, 66, 23–41.
CrossRefShulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.
Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations.
The Journal of Mathematical Behavior, 21(4), 459–490.
CrossRefTall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity.
Educational Studies in Mathematics, 12, 151–169.
CrossRefThompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 122–127). New York: Macmillan.
Toulmin, S. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics, 25, 34–38.
Whitenack, J. W., & Knipping, N. (2002). Argumentation, instructional design theory and students' mathematical learning: A case for coordinating interpretive lenses.
The Journal of Mathematical Behavior, 21(4), 441–457.
CrossRefYackel, E. (2001). Explanation, justification, and argumentation in A mathematics classroom. In M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (vol. 1, pp. 9–24). Utrecht, The Netherlands.
Yackel, E. (2002). What we can learn from analyzing the teacher's role in collective argumentation.
The Journal of Mathematical Behavior, 21(4), 423–440.
CrossRef