Skip to main content
Log in

Thyroid hormone related gene transcription in southern sand flathead (Platycephalus bassensis) is associated with environmental mercury and arsenic exposure

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Arsenic (As) and mercury (Hg) are ubiquitous elements known to disrupt thyroid function in vertebrates. To explore the underlying mechanisms of Hg and As on the fish thyroid system, we investigated the associations between muscle concentrations of Hg and As with thyroid-related gene transcription in flathead (Platycephalus bassensis) from a contaminated estuary. We sampled fish at several sites to determine the hepatic expression of genes including deiodinases (D1 and D2), transthyretin (TTR), thyroid hormone receptors (TRα and TRβ) and related them to Hg and As levels in the same individuals. Negative correlations were observed between Hg levels and D2, TTR, TRα and TRβ, whereas positive associations were found between As concentrations and TTR and TRβ. These results suggest that Hg and As exposures from environmental pollution affect the regulation of genes important for normal thyroid function in fish. These thyroid-related genes could be used as biomarkers for monitoring environmental thyroid-hormone disrupting chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133:1536S–1538S

    CAS  Google Scholar 

  • An LH, Hu JY, Yang M, Zheng BH, Wei A, Shang JJ, Zhao XR (2011) CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China. Mar Pollut Bull 62:718–725. doi:10.1016/j.marpolbul.2011.01.019

    Article  CAS  Google Scholar 

  • Ayling G, Wilson K, Ratkowsky D (1975) Sand flathead (Platycephalus bassensis), an indicator species for mercury pollution in Tasmanian waters. Mar Pollut Bull 6:142–144

    Article  Google Scholar 

  • Barregard L, Lindstedt G, Schutz A, Sallsten G (1994) Endocrine function in mercury exposed chloralkali workers. Occup Environ Med 51:536–540

    Article  CAS  Google Scholar 

  • Bhattacharya T, Bhattacharya S, Ray AK, Dey S (1989) Influence of industrial pollutants on thyroid-function in Channa punctatus (Bloch). Indian J Exp Biol 27:65–68

    CAS  Google Scholar 

  • Bleau H, Daniel C, Chevalier G, vanTra H, Hontela A (1996) Effects of acute exposure to mercury chloride and methylmercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34:221–235. doi:10.1016/0166-445x(95)00040-B

    Article  CAS  Google Scholar 

  • Bloom H, Ayling G (1977) Heavy metals in the Derwent estuary environmental. Geology 2:3–22

    CAS  Google Scholar 

  • Brown SB, Adams BA, Cyr DG, Eales JG (2004) Contaminant effects on the teleost fish thyroid. Environ Toxicol Chem 23:1680–1701

    Article  CAS  Google Scholar 

  • Chen WY, John JAC, Lin CH, Lin HF, Wu SC, Lin CH, Chang CY (2004) Expression of metallothionein gene during embryonic and early larval development in zebrafish. Aquat Toxicol 69:215–227. doi:10.1016/j.aquatox.2004.05.004

    Article  CAS  Google Scholar 

  • Cho YS, Lee SY, Kim KY, Bang IC, Kim DS, Nam YK (2008) Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol Environ Safe 71:125–137. doi:10.1016/j.ecoenv.2007.08.005

    Article  CAS  Google Scholar 

  • Ciarrocca M et al. (2012) Exposure to arsenic in urban and rural areas and effects on thyroid hormones. Inhal Toxicol 24:589–598. doi:10.3109/08958378.2012.703251

    Article  CAS  Google Scholar 

  • Davey JC et al. (2008) Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor- and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 116:165–172. doi:10.1289/ehp.10131

    Article  CAS  Google Scholar 

  • Eisler R (2004) Arsenic hazards to humans, plants, and animals from gold mining. In: Ware G (ed.) Reviews of environmental contamination and toxicology. Springer, New York, p 133–165

  • Ellingsen DG, Efskind J, Haug E, Thomassen Y, Martinsen I, Gaarder PI (2000) Effects of low mercury vapour exposure on the thyroid function in chloralkali workers. J Appl Toxicol 20:483–489

    Article  CAS  Google Scholar 

  • Eustace I (1974) Zinc, cadmium, copper, and manganese in species of finfish and shellfish caught in the Derwent Estuary, Tasmania. Mar Freshw Res 25:209–220

    Article  CAS  Google Scholar 

  • Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ (2011) Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol in Vitro 25:257–266. doi:10.1016/j.tiv.2010.08.013

    Article  CAS  Google Scholar 

  • Green GJ, Coughanowr C (2003) State of the Derwent Estuary: a review of pollution sources, loads and environmental quality data from 1997 to 2003. Department of Primary Industries, Water and Environment.

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203–1203. doi:10.1126/science.1085941

    Article  CAS  Google Scholar 

  • He XQ, Ma Q (2009) Induction of Metallothionein I by arsenic via metal-activated transcription factor 1 critical role of C-terminal cysteine residues in arsenic sensing. J Biol Chem 284:12609–12621. doi:10.1074/jbc.M901204200

    Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi:10.1186/gb-2007-8-2-r19

    Article  Google Scholar 

  • Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. J Toxicol Environ Health B 12:206–223. doi:10.1080/10937400902902062

    Article  CAS  Google Scholar 

  • Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N (2011) Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced purkinje cell dendrite arborization by polybrominated diphenyl ethers. Environ Health Perspect 119:168–175. doi:10.1289/ehp.1002065

    Article  CAS  Google Scholar 

  • Johnson KM, Lema SC (2011) Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri). Gen Comp Endocr 172:505–517. doi:10.1016/j.ygcen.2011.04.022

    Article  CAS  Google Scholar 

  • Jones H, Swadling K, Butler E, Macleod C (2014) Complex patterns in fish–sediment mercury concentrations in a contaminated estuary: the influence of selenium co-contamination? Estuar Coast Shelf Sci 137:14–22

    Article  CAS  Google Scholar 

  • Kendall SD, Christensen MJ (1997) Selenium deficiency decreases expression of the genes for transthyretin and citrate transport protein in rat liver. Nutr Res 17:351–362. doi:10.1016/S0271-5317(96)00264-3

    Article  CAS  Google Scholar 

  • Khan MAK, Wang FY (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28:1567–1577

    Article  CAS  Google Scholar 

  • Kirubagaran R, Joy KP (1994) Effects of short-term exposure to methylmercury chloride and its withdrawal on serum levels of thyroid-hormones in the catfish Clarias batrachus. Environ Contam Toxicol 53:166–170

    Article  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2008) The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 102:532–539. doi:10.1016/j.jinorgbio.2007.10.021

    Article  CAS  Google Scholar 

  • Knapen D, Reynders H, Bervoets L, Verheyen E, Blust R (2007) Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. Aquat Toxicol 82:163–172. doi:10.1016/j.aquatox.2007.02.008

    Article  CAS  Google Scholar 

  • Kondoh M, Inoue Y, Atagi S, Futakawa N, Higashimoto M, Sato M (2001) Specific induction of metallothionein synthesis by mitochondrial oxidative stress. Life Sci 69:2137–2146. doi:10.1016/S0024-3205(01)01294-2

    Article  CAS  Google Scholar 

  • Langlois D, Cooper RJ, Clark NH, Ratkowsky DA (1987) The Effect of a mercury containment program at a zinc smelting plant on the mercury content of sand flathead in the Derwent estuary. Mar Pollut Bull 18:67–70. doi:10.1016/0025-326x(87)90569-8

    Article  CAS  Google Scholar 

  • Lans M, Klasson-Wehler E, Brouwer A (1994) Thyroid hormone binding proteins as targets for hydroxylated PCB, PCDD and PCDF metabolites; an overview. Organohalogen Compd 20:481–485

    CAS  Google Scholar 

  • Leatherland JF (2000) Contaminant-altered thyroid function in wildlife. Taylor & Francis, New York, NY

    Google Scholar 

  • Li W, Zha JM, Spear PA, Li ZL, Yang LH, Wang ZJ (2009) Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery. Aquat Toxicol 92:50–57. doi:10.1016/j.aquatox.2009.01.006

    Article  CAS  Google Scholar 

  • Liu YW, Lo LJ, Chan WK (2000) Temporal expression and T3 induction of thyroid hormone receptors alpha 1 and beta 1 during early embryonic and larval development in zebrafish, Danio rerio. Mol Cell Endocrinol 159:187–195. doi:10.1016/S0303-7207(99)00193-8

    Article  CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol 30:1835–1845

    Article  CAS  Google Scholar 

  • Mieiro CL, Bervoets L, Joosen S, Blust R, Duarte AC, Pereira ME, Pacheco M (2011) Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish—considerations on tissue and species specific responses. Chemosphere 85:114–121. doi:10.1016/j.chemosphere.2011.05.034

    Article  CAS  Google Scholar 

  • Morgado I, Hamers T, Van der Ven L, Power DM (2007) Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere 69:155–163. doi:10.1016/j.chemosphere.2007.04.010

    Article  CAS  Google Scholar 

  • Mori K, Yoshida K, Tani J, Hoshikawa S, Ito A, Watanabe C (2006) Methylmercury inhibits type II 5 ‘-deiodinase activity in NB41A3 neuroblastoma cells. Toxicol Lett 161:96–101. doi:10.1016/j.toxlet.2005.08.001

    Article  CAS  Google Scholar 

  • Nichols JW, Wedemeyer GA, Mayer FL, Dickhoff WW, Gregory SV, Yasutake WT, Smith SD (1984) Effects of freshwater exposure to arsenic trioxide on the parr‐smolt transformation of coho salmon (Oncorhynchus kisutch). Environ Toxicol Chem 3:143–149

    Article  CAS  Google Scholar 

  • Orozco A, Valverde-R C (2005) Thyroid hormone deiodination in fish. Thyroid 15:799–813. doi:10.1089/thy.2005.15.799

    Article  CAS  Google Scholar 

  • Parry GD, Scientific C (1995) The distribution, abundance and diets of demersal fish in Port Phillip Bay. CSIRO INRE Port Phillip Bay Environment Study.

  • Patrick L (2009) Thyroid disruption: mechanisms and clinical implications in human health. Altern Med Rev 14:326–346

    Google Scholar 

  • Penglase S, Hamre K, Ellingsen S (2014) Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radic Biol Med 75:95–104. doi:10.1016/j.freeradbiomed.2014.07.019

    Article  CAS  Google Scholar 

  • Picard-Aitken M, Fournier H, Pariseau R, Marcogliese DJ, Cyr DG (2007) Thyroid disruption in walleye (Sander vitreus) exposed to environmental contaminants: cloning and use of iodothyronine deiodinases as molecular biomarkers. Aquat Toxicol 83:200–211. doi:10.1016/j.aquatox.2007.04.004

    Article  CAS  Google Scholar 

  • Power DM et al. (2001) Thyroid hormones in growth and development of fish. Comp Biochem Phys C 130:447–459. doi:10.1016/S1532-0456(01)00271-X

    CAS  Google Scholar 

  • Power DM, Morgado I, Cardoso JC (2009) Evolutionary insights from fish transthyretin. In: Richardson SJ, Cody V (eds)  Recent advances in transthyretin evolution, structure and biological functions, Springer, Berlin, p 59–75

  • Ratkowsky D, Dix T, Wilson K (1975) Mercury in fish in the Derwent Estuary, Tasmania, and its relation to the position of the fish in the food chain. Mar Freshw Res 26:223–231

    Article  CAS  Google Scholar 

  • Raymond LJ, Ralston NV (2004) Mercury: selenium interactions and health implications. Seychelles Med Dent J 7:72–77

    Google Scholar 

  • Rees CB, McCormick SD, Vanden Heuvel JP, Li WM (2003) Quantitative PCR analysis of CYP1A induction in Atlantic salmon (Salmo salar). Aquat Toxicol 62:67–78

    Article  CAS  Google Scholar 

  • Richardson SJ (2009) Evolutionary changes to transthyretin: evolution of transthyretin biosynthesis. FEBS journal 276:5342–5356

    Article  CAS  Google Scholar 

  • Schlenk D, Wolford L, Chelius M, Steevens J, Chan KM (1997) Effect of arsenite, arsenate, and the herbicide monosodium methyl arsonate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfish. Comparat Biochem Physiol C 118:177–183. doi:10.1016/S0742-8413(97)00083-2

    Article  CAS  Google Scholar 

  • Schlenk D, Zhang YS, Nix J (1995) Expression of hepatic metallothionein messenger-rna in feral and caged fish species correlates with muscle mercury levels. Ecotoxicol Environ Safe 31:282–286. doi:10.1006/eesa.1995.1075

    Article  CAS  Google Scholar 

  • Shen S, Li X-F, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792

    Article  CAS  Google Scholar 

  • Shirey EAL, Langerveld AJ, Mihalko D, Ide CF (2006) Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis. Environ Res 102:205–214. doi:10.1016/j.envres.2006.04.001

    Article  Google Scholar 

  • Simon E et al. (2011) Blood plasma sample preparation method for the assessment of thyroid hormone-disrupting potency in effect-directed analysis. Environ Sci Technol 45:7936–7944. doi:10.1021/es2016389

    Article  CAS  Google Scholar 

  • Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269. doi:10.1080/10408440802233259

    Article  CAS  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress—kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44. doi:10.1016/0167-4838(85)90098-6

    Article  CAS  Google Scholar 

  • Verdouw JJ, Macleod CK, Nowak BF, Lyle JM (2011) Implications of age, size and region on mercury contamination in estuarine fish species. Water Air Soil Pollut 214:297–306. doi:10.1007/s11270-010-0424-y

    Article  CAS  Google Scholar 

  • Wada H, Cristol DA, McNabb FM, Hopkins WA (2009) Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol 43:6031–6038

    Article  CAS  Google Scholar 

  • Ward DM, Nislow KH, Folt CL (2010) Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann N Y Acad Sci 1195:62–83

    Article  CAS  Google Scholar 

  • Yamano K (2005) The role of thyroid hormone in fish development with reference to aquaculture. JARQ 39:161–168

    Article  CAS  Google Scholar 

  • Yamauchi K, Ishihara A, Fukazawa H, Terao Y (2003) Competitive interactions of chlorinated phenol compounds with 3,3 ‘,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol Appl Pharm 187:110–117. doi:10.1016/S0041-008x(02)00045-5

    Article  CAS  Google Scholar 

  • Yan HM, Wang N, Weinfeld M, Cullen WR, Le XC (2009) Identification of arsenic-binding proteins in human cells by affinity chromatography and mass spectrometry. Anal Chem 81:4144–4152. doi:10.1021/ac900352k

    Article  CAS  Google Scholar 

  • Yaoita Y, Brown DD (1990) A correlation of thyroid-hormone receptor gene-expression with amphibian metamorphosis. Gene Dev 4:1917–1924. doi:10.1101/gad.4.11.1917

    Article  CAS  Google Scholar 

  • Yasutake A, Nakamura M (2011) Induction by mercury compounds of metallothioneins in mouse tissues: inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. J Toxicol Sci 36:365–372

    Article  CAS  Google Scholar 

  • Zhang F, Degitz SJ, Holcombe GW, Kosian PA, Tietge J, Veldhoen N, Helbing CC (2006) Evaluation of gene expression endpoints in the context of a Xenopus laevis metamorphosis-based bioassay to detect thyroid hormone disruptors. Aquat Toxicol 76:24–36. doi:10.1016/j.aquatox.2005.09.003

    Article  CAS  Google Scholar 

  • Zoeller RT, Tan SW, Tyl RW (2007) General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol 37:11–53. doi:10.1080/10408440601123446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Nyrstar N. V, Hobart, for allowing us to sample on their heavy metal survey program and for providing access to the heavy metals dataset. Mark Stalker, Catarina Norte dos Santos, Stuart Dick and Neil Linton Warnock are thanked for their help in the field. This work was funded by John Bicknell Scholarship and IPRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingkun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Leef, M., Nowak, B. et al. Thyroid hormone related gene transcription in southern sand flathead (Platycephalus bassensis) is associated with environmental mercury and arsenic exposure. Ecotoxicology 26, 600–612 (2017). https://doi.org/10.1007/s10646-017-1793-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1793-4

Keywords

Navigation