Skip to main content

Advertisement

Log in

Current knowledge of detoxification mechanisms of xenobiotic in honey bees

  • Review
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees’ genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees’ management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Abbott VA, Nadeau JL, Higo HA, Winston ML (2008) Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol 101:784–796

    Article  CAS  Google Scholar 

  • Alaux C, Dantec C, Parrinello H, Le Conte Y (2011) Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 12:496

    Article  CAS  Google Scholar 

  • Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biology Letters 6:562–565

    Article  Google Scholar 

  • Aliouane Y, Adessalam K, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effect on behavior. Environ Toxicol Chem 28:113–122

    Article  CAS  Google Scholar 

  • Alkassab AT, Kirchner WH (2016) Impacts of chronic sublethal exposure to clothianidin on winter honeybees. Ecotoxicology 25(5):1000–1010

    Article  CAS  Google Scholar 

  • Alptekin S, Bass C, Nicholls C, Paine MJI, Clark SJ, Field L, Moores GD (2016) Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes. Insect Molec Biol 25:171–180

    Article  CAS  Google Scholar 

  • Ament SA, Chan QW, Wheeler MM, Nixon SE, Johnson SP et al. (2011) Mechanisms of stable lipid loss in a social insect. J Exp. Biol 214:3808–3821

    Article  CAS  Google Scholar 

  • Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F et al. (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 9(3):e91686

    Article  CAS  Google Scholar 

  • Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Leeuwen TV (2015) Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics 16:974

    Article  CAS  Google Scholar 

  • Barmaz S, Vaj C, Ippolito A, Vighi M (2012) Exposure of pollinators to plant protection products. Ecotoxicology 21:2177–2185

    Article  CAS  Google Scholar 

  • Bass C, Hebsgaard MB, Hughes J (2012) Genomic resources for the brown planthopper, Nilaparvata lugens: transcriptome pyrosequencing and microarray design. Insect Sci 19:1–12

    Article  CAS  Google Scholar 

  • Berenbaum MR, Johnson RM (2015) Xenobiotic detoxification pathways in honey bees. CurrOpin Insect Sci 10:51–58

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Article  CAS  Google Scholar 

  • Blacquière T, Smagghe G, vanGestel CM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992

    Article  CAS  Google Scholar 

  • Boncristianai H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honeybees Apis mellifera. J Insect Physiol 58:613–620

    Article  CAS  Google Scholar 

  • Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J Insect Physiol 86:40–47

    Article  CAS  Google Scholar 

  • Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61:742–748

    Article  CAS  Google Scholar 

  • Carvalho SM, Belzunces LP, Carvalho GA, Brunet JL, Badiou- Beneteau A (2013) Enzymatic biomarkers as tools to assess environmental quality: a study of exposure of the honeybee Apis mellifera to insecticides. Environm Toxicol Chem 17:2114–2214

    Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molec Biol 15:615–636

    Article  CAS  Google Scholar 

  • Codling G, Naggar YA, Giesy JP, Robertson AJ (2016) Concentrations of neonicotinoid insecticides in honey, pollen and honeybees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 144:2321–2328

    Article  CAS  Google Scholar 

  • Corona M, Hughes KA, Weaver DB, Robinson GE (2005) Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 126:1230–1238

  • Daborn P, Boundy S, Yen J, Pittendrigh B, ffrench-Constant R (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266:556–563

    Article  CAS  Google Scholar 

  • Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P (2002) A single P450 Allele associated with insecticide resistance in Drosophila. Science 297:2253–2256

    Article  CAS  Google Scholar 

  • David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM et al. (2005) The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci USA 102:4080–4084

    Article  CAS  Google Scholar 

  • Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delègue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250

    Article  CAS  Google Scholar 

  • Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277

    Article  Google Scholar 

  • Degrandi-Hoffman G, Chen Y, Huang E, Huang MH (2010) The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J Insect Physiol 56:1184–1191

    Article  CAS  Google Scholar 

  • Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, Moles A, Snart C, Ryder T, Ortori CA et al. (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8:e68191

    Article  CAS  Google Scholar 

  • Dermaauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45:89–110

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A et al. (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One 8(8):e72016

    Article  CAS  Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci USA 110(46):18466–18471

    Article  CAS  Google Scholar 

  • du Rand EE, Smit S, Beukes M, Apostolides Z, Pirk CWW, Nicolson SW (2015) Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 5:11779

    Article  Google Scholar 

  • Dussaubat C, Maisonnasse A, Crauser D, Tchamitchian S, Bonnet M, Cousin M, Kretzschmar A, Brunet JL, Le Conte Y (2016) Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival. Sci Rep 6:31430

    Article  CAS  Google Scholar 

  • Feyereisen R (2005) Insect cytochrome P450. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science [vol. 4]: biochemistry and molecular biology. Elsevier, Amsterdam, p 1–77

    Chapter  Google Scholar 

  • Feyereisen R (2012) Insect CYP genes and P450 enzymes. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Elsevier, Academic Press, pp 236–316

  • Foley K, Fazio G, Jensen AB, Hughes WOH (2014) The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Veterinary Microbiol 169:203–210

    Article  Google Scholar 

  • Frost EH, Shutler D, Hillier NK (2013) Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J Exp Biol 216:2931–2938

    Article  CAS  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108

    Article  CAS  Google Scholar 

  • Glavan G, Bozic J (2013) The synergy of xenobiotics in honeybee Apis mellifera: mechanisms and effects. Acta Biol Slov 56:11–25

    Google Scholar 

  • Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25

    Article  CAS  Google Scholar 

  • Gong YH, Li T, Zhang L, Gao XW, Liu N (2013) Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus. Int J Biol Sci 9:863–871

    Article  CAS  Google Scholar 

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208

    Article  CAS  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957

    Article  CAS  Google Scholar 

  • Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pest Biochem Physiol 99:200–207

    Article  CAS  Google Scholar 

  • Gregorc A, Evans JD, Scharf M, Ellis JD (2012) Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). J Insect Physiol 58:1042–1049

    Article  CAS  Google Scholar 

  • Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222

    Article  CAS  Google Scholar 

  • Guo LT, Xie W, Wang SL, Zhang YJ (2014) Detoxification enzymes of Bemisia tabaci B and Q: biochemical characteristics and gene expression profiles. Pest Manag Sci 70:1588–1594

    Article  CAS  Google Scholar 

  • Han P, Niu CY, Biondi A, Desneux N (2012) Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicology 14(7):757–769

    Google Scholar 

  • Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Quantification of toxins in a Cryl Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19:1452–1459

    Article  CAS  Google Scholar 

  • Henry M, Béguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A Common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    Article  CAS  Google Scholar 

  • Huang Z (2012) Pollen nutrition affects honey bee stress resistance. Terr Arthropod Rev 5:175–189

    Article  Google Scholar 

  • Iwasa T, Motoyama N, Ambrose JT, Michael Roe R (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378

    Article  CAS  Google Scholar 

  • Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434

    Article  CAS  Google Scholar 

  • Johnson RM, Dahlgren L, Siegfried BD, Ellis MD (2013) Acaricide, fungicide and drug interactions in honeybees (Apis mellifera). PLoS One 8:e54092

    Article  CAS  Google Scholar 

  • Johnson RM, Mao WF, Pollock HS, Niu GD, Schuler MA, Berenbaum MR (2012) Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 7:e31051

    Article  CAS  Google Scholar 

  • Johnson RM, Pollock HS, Berenbaum MR (2009) Synergistic interactions between in-hive miticides in Apis mellifera. J Econ Entomol 102:474–479

    Article  CAS  Google Scholar 

  • Johnson RM, Schuler MA, Berenbaum MR (2006) Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J Econ Entomol 99:1046–1050

    Article  CAS  Google Scholar 

  • Jouben N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64:65–73

    Article  CAS  Google Scholar 

  • Karahan A, Çakmak I, Hranitz JM, Karaca I, Wells H (2015) Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24:2017–2025

    Article  CAS  Google Scholar 

  • Karunker I, Morou E, Nikou D, Nauen R, Sertchook R, Stevenson BJ, Paine MJI, Morin S, Vontas J (2009) Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochem Molec 39:697–706

    Article  CAS  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  Google Scholar 

  • Kwak MM, Velterop O, van Andel J (1998) Pollen and gene flow in fragmented habitats. Appl Veg Sci 1:37–54

    Article  Google Scholar 

  • Li T, Cao CW, Yang T, Zhang L, He L, Xi ZY, Bian GW, Liu NN (2015) A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 5:17772

    Article  CAS  Google Scholar 

  • Li T, Liu L, Zhang L, Liu N (2014) Role of G-proteincoupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus. Sci Rep 4:6474

    Article  CAS  Google Scholar 

  • Li M, Reid WR, Zhang L, Scott JG, Gao X, Kristensen M et al. (2013) A whole transcriptomal linkage analysis of gene co-regulation in insecticide resistant house flies, Musca domestica. BMC Genomics 14:803

    Article  CAS  Google Scholar 

  • Liu NN, Li M, Gong YH, Liu F, Li T (2015) Cytochrome P450s—their expression, regulation, and role in insecticide resistance. Pest Biochem Physiol 120:77–81

    Article  CAS  Google Scholar 

  • Ma WH, Shen JS, Guo Y, Zhang YY, Shao YQ (2011) Effects of Zaohua disease on activities of digestive enzymes and detoxification enzymes in Apis mellifera ligustica. Acta Entomol Sin 54:1076–1081

    CAS  Google Scholar 

  • Mao W, Johnson RM, Rupasinghe S, Schuler MA, Berenbaum MR (2009) Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera Hymenoptera: Apidae. Comp Biochem Physiol C: Toxicol Pharmacol 154:427–434

    Article  CAS  Google Scholar 

  • Mao W, Schuler MA, Berenbaum MR (2011) CYP9Q-mediated detoxification of acaricides in the honeybee (Apis mellifera). Proc Natl Acad Sci USA 31:12657–12662

    Article  CAS  Google Scholar 

  • Mao W, Schuler MA, Berenbaum MR (2013) Honey constituents upregulate detoxification and immunity genes in the western honeybee Apis mellifera. Proc Natl Acad Sci USA 110:8842–8846

    Article  CAS  Google Scholar 

  • Mason R, Tennekes H, Sánchez-Bayo F, Jepsen PU (2014) Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol 1:3–12

    Article  Google Scholar 

  • Milchreit K, Ruhnke H, Wegener J, Bienefeld K (2016) Effects of an insect growth regulator and a solvent on honeybee (Apis mellifera L.) brood development and queen viability. Ecotoxicology 25:530–537

    Article  CAS  Google Scholar 

  • Müller P, Warr E, Stevenson BJ, Pignatelli PM, Morgan JC, Steven A, Yawson AE, Mitchell SN, Ranson H, Hemingway J, Paine MJI, Donnelly MJ (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLOS Genet 4:e1000286

    Article  CAS  Google Scholar 

  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754

    Article  CAS  Google Scholar 

  • Mussen EC (2008) Fungicides toxic to bees? From the UC Apiaries 17:1–3

    Google Scholar 

  • National Academy of Sciences (2007) Status of pollinators in North America. National Academies Press, Washington, DC

    Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586

  • Neumann P, Carreck NL (2010) Honey bee colony loss. J Apic Res 49(Special Issue):1–6

    Article  Google Scholar 

  • Nielsen SA, Brødsgaard CJ, Hansen H (2000) Effects on detoxification enzymes in diferent life stages of honeybees (Apis mellifera L. Hymenoptera: Apidae) treated with a synthetic pyrethroid (Flumethrin). Altern Lab Anim 28:437–443

    Google Scholar 

  • Oldroyd PB (2007) What’s killing American honey bees? PLoS Biol 5:e168

    Article  CAS  Google Scholar 

  • Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182

    Article  CAS  Google Scholar 

  • Pettis JS, vanEngelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–1158

    Article  CAS  Google Scholar 

  • Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP (2008) Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol 38:540–551

    Article  CAS  Google Scholar 

  • Poupardin R, Riaz MA, Vontas J, David JP, Reynaud S (2010) Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. Insect Mol Biol 19(2):185–193

    Article  CAS  Google Scholar 

  • Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aqual Toxicol 93:61–69

    Article  CAS  Google Scholar 

  • Rinderer TE, Elliott KD (1977) Worker honey bee response to infection with Nosema apis. J Econ Entomol 70:431–433

    Article  Google Scholar 

  • Rinderer TE, Rothenbuhler WC, Gochnauer TA (1974) The influence of pollen on the susceptibility of honey-bee larvae to Bacillus larvae. J Invertebr Pathol 23:347–350

    Article  CAS  Google Scholar 

  • Roat TC, dos Santos-Pinto JR, Dos Santos LD, Santos KS, Malaspina O, Palma MS (2015) Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil. Ecotoxicology 23:1659–1670

    Article  CAS  Google Scholar 

  • Roditakis E, Morou E, Tsagkarakou A, Riga M, Nauen R, Paine M, Morin S, Vontas J (2011) Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Sci 18:23–29

    Article  CAS  Google Scholar 

  • Schmehl DR, Teal PEA, Frazier JL, Grozinger CM (2014) Genomic analysis of the interaction between pesticide exposure and nutrition in honeybees (Apis mellifera). J Insect Physiol 71:177–190

    Article  CAS  Google Scholar 

  • Schmuck R, Stadler T, Schmidt HW (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag Sci 59:279–286

    Article  CAS  Google Scholar 

  • Singaravelan N, Inbar M, Ne’eman G, Distl M, Wink M, Izhaki I (2006) The effects of nectar-nicotine on colony fitness of caged honeybees. J Chem Ecol 32:49–59

    Article  CAS  Google Scholar 

  • Stark JD, Jepson PC, Mayer DF (1995) Limitation to the use of topical toxicity data for prediction of pesticide side-effect in the field. J Econ Entomol 88:1081–1088

    Article  CAS  Google Scholar 

  • Stokstad E (2007) The case of the empty hives. Science 316:970–972

    Article  CAS  Google Scholar 

  • Suchail S, De Sousa G, Rahmani R, Belzunces LP (2004) In vivo distribution and metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. Pest Manag Sci 60:1056–1062

    Article  CAS  Google Scholar 

  • Tan K, Chen WW, Dong SH, Liu XW, Wang YC, Nieh JC (2015) A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci Rep 5:10989

    Article  Google Scholar 

  • Teeters BS, Johnson RM, Ellis MD, Siegfried BD (2012) Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem 31:1349–1354

    Article  CAS  Google Scholar 

  • Thompson HM, Wilkins S (2003) Assessment of the synergy and repellency of pyrethroid/fungicide mixtures. Bull Insectol 56(1):131–134

    Google Scholar 

  • Thompson HM, Wilkins S, Battersby AH, Waite RJ, Wilkinson D (2005) The effects of four growth regulating (IGR) insecticides on honey bee (Apis mellifera L.) colony development, queen rearing and drone sperm production. Ecotoxicology 14:757–769

    Article  CAS  Google Scholar 

  • VanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:S80–S95

    Article  Google Scholar 

  • Velthuis HHW, Van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  • Vidau C, Diogon M, Aufauvre J, Fontbonne R, Vigues B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550

    Article  CAS  Google Scholar 

  • Wahl O, Ulm K (1983) Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia 59:106–128

    Article  CAS  Google Scholar 

  • Wehling M, Von der Ohe W, Brasse D, Forster R (2009) Colony losses—interactions of plant protection products and other factors. Julius Kühn Arch 423:153–154

    Google Scholar 

  • Williamson SM, Willis SJ, Wright GA (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23:1409–1418

    Article  CAS  Google Scholar 

  • Williamson SM, Wright GA (2013) Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol 216:1799–1807

    Article  CAS  Google Scholar 

  • Xu JH, Strange JP, Welker DL, James RR (2013) Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae). BMC Genomics 14:874

    Article  CAS  Google Scholar 

  • Xu LN, Wang YQ, Wang ZY, Hu BJ, Ling YH, He KL (2015) Transcriptome differences between Cry1Ab resistant and susceptible strains of Asian corn borer. BMC Genomics 16:173

    Article  CAS  Google Scholar 

  • Yan H, Jia H, Gao H, Guo X, Xu B (2013) Identification, genomic organization and oxidative stress response of a sigma class glutathione S-transferase (AccGSTS1) in the honeybee, Apis cerana cerana. Cell Stress Chaperon 18:415–426

    Article  CAS  Google Scholar 

  • Yu SJ, Robinson FA, Nation JL (1984) Detoxication capacity in the honey bee, Apis mellifera L. Pestic Biochem Physiol 22:360–368

    Article  CAS  Google Scholar 

  • Zhang Y, Yan H, Lu W, Li Y, Guo X, Xu B (2013) A novel omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterization of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperon 18:503–516

    Article  CAS  Google Scholar 

  • Zhu W, Schmehl D, Mullin C, Frazier J (2014a) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS One 9:e77547

    Article  CAS  Google Scholar 

  • Zhu GD, Zhong DB, Cao J, Zhou HY, Li JL, Liu YB, Bai L, Xu S, Wang MH, Zhou GF, Chang XL, Gao Q, Yan GY (2014b) Transcriptome profiling of pyrethroid resistant and susceptible mosquitoes in the malaria vector, Anopheles sinensis. BMC Genomics 15:448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Agricultural Science and Technology Innovation Program (No. CAAS-ASTIP-2016-IAR) and General Financial Grant from the China Postdoctoral Science Foundation (No. 2016M591307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Diao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Diao, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 26, 1–12 (2017). https://doi.org/10.1007/s10646-016-1742-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1742-7

Keywords

Navigation