Skip to main content
Log in

In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam M, Maughan O (1992) The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol Trace Elem Res 34:225–236

    Article  CAS  Google Scholar 

  • Al-Ghais SM (2013) Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar Pollut Bull 74:183–186. doi:10.1016/j.marpolbul.2013.07.005

    Article  CAS  Google Scholar 

  • Amiard J-C, Amiard Triquet C (2008) Les biomarqueurs dans l’évaluation de l’état écologique des milieux aquatiques. Lavoisier, Paris

    Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202. doi:10.1016/j.aquatox.2005.08.015

    Article  CAS  Google Scholar 

  • Andersen F, Lygren B, Maage A, Waagbø R (1998) Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon (Salmo salar) smolts. Aquaculture 161:437–451

    Article  CAS  Google Scholar 

  • Andersson C, Katsiadaki I, Lundstedt-Enkel K, Örberg J (2007) Effects of 17α-ethynylestradiol on EROD activity, spiggin and vitellogenin in three-spined stickleback (Gasterosteus aculeatus). Aquat Toxicol 83:33–42. doi:10.1016/j.aquatox.2007.03.008

    Article  CAS  Google Scholar 

  • Babo S, Vasseur P (1992) In vitro effects of Thiram on liver antioxidant enzyme activities of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 22:61–68

    Article  CAS  Google Scholar 

  • Bado-Nilles A, Quentel C, Mazurais D, Zambonino-Infante JL, Auffret M, Thomas-Guyon H, Le Floch S (2011) In vivo effects of the soluble fraction of light cycle oil on immune functions in the European sea bass, Dicentrarchus labrax (Linne). Ecotoxicol Environ Saf 74:1896–1904. doi:10.1016/j.ecoenv.2011.06.021

    Article  CAS  Google Scholar 

  • Bado-Nilles A, Betoulle S, Geffard A, Porcher JM, Gagnaire B, Sanchez W (2013) Flow cytometry detection of lysosomal presence and lysosomal membrane integrity in the three-spined stickleback (Gasterosteus aculeatus L.) immune cells: applications in environmental aquatic immunotoxicology. Environ Sci Pollut Res Int 20:2692–2704. doi:10.1007/s11356-012-1410-2

    Article  CAS  Google Scholar 

  • Barillet S, Buet A, Adam C, Devaux A, Devaux A (2005) Does uranium exposure induce genotoxicity in the teleostean Danio rerio? First experimental results. Radioprotection 40:S175–S181

    Article  Google Scholar 

  • Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A (2011) Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut 159:495–502. doi:10.1016/j.envpol.2010.10.013

    Article  CAS  Google Scholar 

  • Bennett PM, Janz DM (2007) Bioenergetics and growth of young-of the-year northern pike (Esox lucius) and burbot (Lota lota) exposed to metal mining effluent. Ecotoxicol Environ Saf 68:1–12. doi:10.1016/j.ecoenv.2007.01.013

    Article  CAS  Google Scholar 

  • Birge WJ, Black JA, Westerman AG, Short TM, Taylor SB, Bruser DM, Wallingford ED (1985) Recommendations on numerical values for regulating iron and chloride concentrations for the purpose of protecting warm water species of aquatic life in the Commonwealth of Kentucky Memorandum of Agreement 5429

  • Blom S, Andersson TB, Förlin L (2000) Effects of food deprivation and handling stress on head kidney 17α-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat Toxicol 48:265–274

    Article  CAS  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LE (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    Article  CAS  Google Scholar 

  • Bonga SW (1997) The stress response in fish. Physiol Rev 77:591–625

    Google Scholar 

  • Bowden TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunol 25:373–383. doi:10.1016/j.fsi.2008.03.017

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Buckler DR, Cleveland L, Little EE, Brumbaugh WG (1995) Survival, sublethal responses, and tissue residues of Atlantic salmon exposed to acidic pH and aluminum. Aquat Toxicol 31:203–216

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  Google Scholar 

  • Cazala C, Andrès C, Decossas J-L, Cathelineau M, Peiffert C (2008) Impact of uranium mines water treatment on uranium and radium behaviour. In: Merkel B, Hasche-Berger A (eds) Uranium, mining and hydrogeology. Springer, Berlin, p 829–838. doi:10.1007/978-3-540-87746-2_109

  • Chilmonczyk S, Monge D (1999) Flow cytometry as a tool for assessment of the fish cellular immune response to pathogens. Fish Shellfish Immunol 9:319–333

    Article  Google Scholar 

  • Clevenger T (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollut 50:241–254

    Article  CAS  Google Scholar 

  • Cooley HM, Evans RE, Klaverkamp JF (2000) Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 48:495–515. doi:10.1016/S0166-445X(99)00057-0

    Article  CAS  Google Scholar 

  • Cossarini-Dunier M, Demael A, Lepot D, Guerin V (1988) Effect of manganese ions on the immune response of carp (Cyprinus carpio) against Yersinia ruckeri. Dev Comp Immunol 12:573–579

    Article  CAS  Google Scholar 

  • Dalzell DJB, Macfarlane NAA (1999) The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. J Fish Biol 55:301–315. doi:10.1111/j.1095-8649.1999.tb00680.x

    Article  CAS  Google Scholar 

  • Dunier M (1996) Water pollution and immunosuppression of freshwater fish. Ital J Zool 63:303–309

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Elsasser M, Roberson B, Hetrick F (1986) Effects of metals on the chemiluminescent response of rainbow trout (Salmo gairdneri) phagocytes. Vet Immunol Immunopathol 12:243–250

    Article  CAS  Google Scholar 

  • Espelid S, Løkken GB, Steiro K, Bøgwald J (1996) Effects of cortisol and stress on the immune system in Atlantic Salmon (Salmo salar L.). Fish Shellfish Immunol 6:95–110

    Article  Google Scholar 

  • European-Commission (2003) Technical guidance document on risk assessment, part II European communities, p 1–337

  • Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103:112–120. doi:10.1016/j.aquatox.2011.02.010

    Article  CAS  Google Scholar 

  • Favier A (2003) Le stress oxydant. L’actual chim 270:108–115

    Google Scholar 

  • Fernandez-Davila ML, Razo-Estrada AC, Garcia-Medina S, Gomez-Olivan LM, Pinon-Lopez MJ, Ibarra RG, Galar-Martinez M (2012) Aluminum-induced oxidative stress and neurotoxicity in grass carp (Cyprinidae-Ctenopharingodon idella). Ecotoxicol Environ Saf 76:87–92. doi:10.1016/j.ecoenv.2011.09.012

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  • Gagnaire B, Bado-Nilles A, Betoulle S, Amara R, Camilleri V, Cavalié I, Chadili E, Delahaut L, Kerambrun E, Orjollet D, Palluel O, Sanchez W (2015) Former uranium mine-induced effects in caged roach: a multiparametric approach for the evaluation of in situ metal toxicity. Ecotoxicology 24:215–231. doi:10.1007/s10646-014-1374-8

    Article  CAS  Google Scholar 

  • Galloway TS, Brown RJ, Browne MA, Dissanayake A, Lowe D, Jones MB, Depledge MH (2004) Ecosystem management bioindicators: the ECOMAN project—a multi-biomarker approach to ecosystem management. Mar Environ Res 58:233–237. doi:10.1016/j.marenvres.2004.03.064

    Article  CAS  Google Scholar 

  • Garcia-Medina S, Razo-Estrada C, Galar-Martinez M, Cortez-Barberena E, Gomez-Olivan LM, Alvarez-Gonzalez I, Madrigal-Bujaidar E (2011) Genotoxic and cytotoxic effects induced by aluminum in the lymphocytes of the common carp (Cyprinus carpio). Comp Biochem Physiol C 153:113–118. doi:10.1016/j.cbpc.2010.09.005

    Google Scholar 

  • Goyer RA, Clarkson TW (1996) Toxic effects of metals Casarett & Doull’s toxicology. In: Klaassen CD (ed) The basic science of poisons, 5th edn. McGraw-Hill Health Professions Division, New York. ISBN 71054766

  • GRNC (2002) Risques pour l’environnement. Evaluation des risques associés aux rejets chimiques des installations nucléaires du Nord-Cotentin 3:49 and annexes

  • Gust M, Fortier M, Garric J, Fournier M, Gagne F (2013) Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis. Aquat Toxicol 126:393–403. doi:10.1016/j.aquatox.2012.09.001

    Article  CAS  Google Scholar 

  • Hart P, Gill A (1994) Evolution of foraging behaviour in the three spine stickleback. In: The evolutionary biology of the three spine stickleback. Oxford University Press, Oxford, p 207–239

  • Heier LS, Teien HC, Oughton D, Tollefsen KE, Olsvik PA, Rosseland BO, Lind OC, Farmen E, Skipperud L, Salbu B (2013) Sublethal effects in Atlantic salmon (Salmo salar) exposed to mixtures of copper, aluminium and gamma radiation. J Environ Radioact 121:33–42. doi:10.1016/j.jenvrad.2012.04.004

    Article  CAS  Google Scholar 

  • Herlory O, Bonzom JM, Gilbin R, Frelon S, Fayolle S, Delmas F, Coste M (2013) Use of diatom assemblages as biomonitor of the impact of treated uranium mining effluent discharge on a stream: case study of the Ritord watershed (Center-West France). Ecotoxicology 22:1186–1199. doi:10.1007/s10646-013-1106-5

    Article  CAS  Google Scholar 

  • Holdway D (1992) Uranium toxicity to two species of Australian tropical fish. Sci Total Environ 125:137–158

    Article  CAS  Google Scholar 

  • Hudcova H, Badurova J, Rozkosny M, Sova J, Funkova R, Svobodova J (2013) Quality and mutagenicity of water and sediment of the streams impacted by the former uranium mine area Olsi-Drahonin (Czech Republic). J Environ Radioact 116:159–165. doi:10.1016/j.jenvrad.2012.09.014

    Article  CAS  Google Scholar 

  • INERIS (2005) Aluminum and derivatives. Toxicological and environmental data sheets of chemicals

  • INERIS (2008a) Barium. Toxicological and environmental data sheets of chemicals

  • INERIS (2008b) Uranium. Toxicological and environmental data sheets of chemicals

  • IRSN (2007) Inventaire national des sites miniers d’uranium

  • Javed M, Abdullah S (2006) Studies on acute and lethal toxicities of iron and nickel to the fish. Pak J Biol Sci 9:330–335

    Article  CAS  Google Scholar 

  • Jolly S, Jaffal A, Delahaut L, Palluel O, Porcher J-M, Geffard A, Sanchez W, Betoulle S (2014) Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L. Environ Sci Pollut Res 21:13103–13117

    Article  CAS  Google Scholar 

  • Katsiadaki I (2006) The use of the stickleback as a sentinel and model species in ecotoxicology. In: Biology of the three-spined stickleback. CRC Press, USA, pp 319–352

  • Kelly JM, Janz DM (2009) Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill. Aquat Toxicol 92:240–249. doi:10.1016/j.aquatox.2009.02.007

    Article  CAS  Google Scholar 

  • Kerambrun E, Henry F, Perrichon P, Courcot L, Meziane T, Spilmont N, Amara R (2012) Growth and condition indices of juvenile turbot, Scophthalmus maximus, exposed to contaminated sediments: effects of metallic and organic compounds. Aquat Toxicol 108:130–140. doi:10.1016/j.aquatox.2011.07.016

    Article  CAS  Google Scholar 

  • Kerambrun E, Henry F, Cornille V, Courcot L, Amara R (2013) A combined measurement of metal bioaccumulation and condition indices in juvenile European flounder, Platichthys flesus, from European estuaries. Chemosphere 91:498–505. doi:10.1016/j.chemosphere.2012.12.010

    Article  CAS  Google Scholar 

  • Laroche J, Quiniou L, Juhel G, Auffret M, Moraga D (2002) Genetic and physiological responses of flounder (Platichthys flesus) populations to chemical contamination in estuaries. Environ Toxicol Chem 21:2705–2712

    Article  CAS  Google Scholar 

  • Le Guernic A, Sanchez W, Palluel O, Bado-Nilles A, Turies C, Chadili E, Cavalié I, Adam-Guillermin C, Porcher J-M, Geffard A, Betoulle S, Gagnaire B (2016) In situ experiments to assess effects of constraints linked to caging on ecotoxicity biomarkers of the three-spined stickleback (Gasterosteus aculeatus L.). Fish Physiol Biochem 42:643–657

    Article  Google Scholar 

  • Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res/Rev Mutat Res 544:43–64. doi:10.1016/S1383-5742(03)00017-6

    Article  CAS  Google Scholar 

  • Liang Y, Cheung RYH, Wong MH (1999) Reclamation of wastewater for polyculture of freshwater fish: bioaccumulation of trace metals in fish. Water Res 33:2690–2700

    Article  CAS  Google Scholar 

  • Lin H-J, Kao W-Y, Wang Y-T (2007) Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan Estuarine. Coast Shelf Sci 73:527–537. doi:10.1016/j.ecss.2007.02.013

    Article  Google Scholar 

  • Linde-Arias AR, Inacio AF, Novo LA, de Alburquerque C, Moreira JC (2008) Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba do Sul. Environ Pollut 156:974–979. doi:10.1016/j.envpol.2008.05.006

    Article  CAS  Google Scholar 

  • Lourenco J, Pereira R, Goncalves F, Mendo S (2013) Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area. Sci Total Environ 443:673–680. doi:10.1016/j.scitotenv.2012.10.105

    Article  CAS  Google Scholar 

  • Lozano J, Vera Tomé F, Gómez Escobar V, Blanco Rodrıguez P (2000) Radiological characterization of a uranium mine with no mining activity. Appl Radiat Isot 53:337–343

    Article  CAS  Google Scholar 

  • Lukin A, Sharova J, Belicheva L, Camus L (2011) Assessment of fish health status in the Pechora River: effects of contamination. Ecotoxicol Environ Saf 74:355–365. doi:10.1016/j.ecoenv.2010.10.022

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    Article  CAS  Google Scholar 

  • Maceda-Veiga A, Monroy M, Navarro E, Viscor G, de Sostoa A (2013) Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean River. Sci Total Environ 449:9–19. doi:10.1016/j.scitotenv.2013.01.012

    Article  CAS  Google Scholar 

  • Maria V, Ahmad I, Oliveira M, Serafim A, Bebianno M, Pacheco M, Santos M (2009) Wild juvenile Dicentrarchus labrax L. liver antioxidant and damage responses at Aveiro Lagoon, Portugal. Ecotoxicol Environ Saf 72:1861–1870

    Article  CAS  Google Scholar 

  • Marques SM, Chaves S, Goncalves F, Pereira R (2013) Evaluation of growth, biochemical and bioaccumulation parameters in Pelophylax perezi tadpoles, following an in situ acute exposure to three different effluent ponds from a uranium mine. Sci Total Environ 445–446:321–328. doi:10.1016/j.scitotenv.2012.12.080

    Article  Google Scholar 

  • Mathews T, Beaugelin-Seiller K, Garnier-Laplace J, Gilbin R, Adam C, Della-Vedova C (2009) A probabilistic assessment of the chemical and radiological risks of chronic exposure to uranium in freshwater ecosystems. Environ Sci Technol 43:6684–6690

    Article  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248. doi:10.1016/0891-5849(94)90079-5

    Article  CAS  Google Scholar 

  • Nagae M, Ogawa K, Kawahara A, Yamaguchi M, Nishimura T, Ito F (2001) Effect of acidification stress on endocrine and immune functions in carp, Cyprinus carpio. Water Air Soil Pollut 130:893–898

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oikari A (2006) Caging techniques for field exposures of fish to chemical contaminants. Aquat Toxicol 78:370–381. doi:10.1016/j.aquatox.2006.03.010

    Article  CAS  Google Scholar 

  • Oliva M, Jose Vicente J, Gravato C, Guilhermino L, Dolores Galindo-Riano M (2012a) Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva Estuary (SW Spain): seasonal and spatial variation. Ecotoxicol Environ Saf 75:151–162. doi:10.1016/j.ecoenv.2011.08.017

    Article  CAS  Google Scholar 

  • Oliva M, Perales JA, Gravato C, Guilhermino L, Galindo-Riano MD (2012b) Biomarkers responses in muscle of Senegal sole (Solea senegalensis) from a heavy metals and PAHs polluted estuary. Mar Pollut Bull 64:2097–2108. doi:10.1016/j.marpolbul.2012.07.017

    Article  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 154:536–541

    Article  CAS  Google Scholar 

  • Pereira R, Pereira ML, Ribeiro R, Goncalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575. doi:10.1016/j.envpol.2005.04.038

    Article  CAS  Google Scholar 

  • Pereira R, Antunes SC, Marques SM, Goncalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa Uranium Mine (Central Portugal): I soil chemical characterization. Sci Total Environ 390:377–386. doi:10.1016/j.scitotenv.2007.08.051

    Article  CAS  Google Scholar 

  • Poléo A (1995) Aluminium polymerization—a mechanism of acute toxicity of aqueous aluminium to fish. Aquat Toxicol 31:347–356

    Article  Google Scholar 

  • Pottinger T, Carrick T, Yeomans W (2002) The three-spined stickleback as an environmental sentinel: effects of stressors on whole-body physiological indices. J Fish Biol 61:207–229

    Article  Google Scholar 

  • Qu R, Feng M, Wang X, Qin L, Wang C, Wang Z, Wang L (2014) Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. Aquat Toxicol 150:9–16. doi:10.1016/j.aquatox.2014.02.008

    Article  CAS  Google Scholar 

  • Roesijadi G (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol C 113:117–123

    Google Scholar 

  • Roussel H, Joachim S, Lamothe S, Palluel O, Gauthier L, Bonzom JM (2007) A long-term copper exposure on freshwater ecosystem using lotic mesocosms: individual and population responses of three-spined sticklebacks (Gasterosteus aculeatus). Aquat Toxicol 82:272–280. doi:10.1016/j.aquatox.2007.02.018

    Article  CAS  Google Scholar 

  • Ruas CB, dos Carvalho CS, de Araujo HS, Espindola EL, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf 71:86–93. doi:10.1016/j.ecoenv.2007.08.018

    Article  CAS  Google Scholar 

  • Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, Ait-Aissa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183. doi:10.1016/j.etap.2004.07.003

    Article  CAS  Google Scholar 

  • Sanchez W, Ait-Aissa S, Palluel O, Ditche JM, Porcher JM (2007) Preliminary investigation of multi-biomarker responses in three-spined stickleback (Gasterosteus aculeatus L.) sampled in contaminated streams. Ecotoxicology 16:279–287. doi:10.1007/s10646-006-0131-z

    Article  CAS  Google Scholar 

  • Sanchez W, Katsiadaki I, Piccini B, Ditche JM, Porcher JM (2008a) Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwater biomonitoring: a multiparametric approach. Environ Int 34:490–498. doi:10.1016/j.envint.2007.11.003

    Article  CAS  Google Scholar 

  • Sanchez W, Piccini B, Ditche JM, Porcher JM (2008b) Assessment of seasonal variability of biomarkers in three-spined stickleback (Gasterosteus aculeatus L.) from a low contaminated stream: implication for environmental biomonitoring. Environ Int 34:791–798. doi:10.1016/j.envint.2008.01.005

    Article  Google Scholar 

  • Santos R, Palos-Ladeiro M, Besnard A, Porcher JM, Bony S, Sanchez W, Devaux A (2013) Relationship between DNA damage in sperm after ex vivo exposure and abnormal embryo development in the progeny of the three-spined stickleback. Reprod Toxicol 36:6–11. doi:10.1016/j.reprotox.2012.11.004

    Article  CAS  Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Vet Med 56:537–546

    CAS  Google Scholar 

  • Skipperud L, Stromman G, Yunusov M, Stegnar P, Uralbekov B, Tilloboev H, Zjazjev G, Heier LS, Rosseland BO, Salbu B (2013) Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J Environ Radioact 123:50–62. doi:10.1016/j.jenvrad.2012.05.007

    Article  CAS  Google Scholar 

  • Spry DJ, Wiener JG (1991) Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review. Environ Pollut 71:243–304. doi:10.1016/0269-7491(91)90034-T

    Article  CAS  Google Scholar 

  • Stubblefield WA, Brinkman SF, Davies PH, Garrison TD, Hockett JR, McIntyre MW (1997) Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta). Environ Toxicol Chem 16:2082–2089

    Article  CAS  Google Scholar 

  • Teodorova S, Metcheva R, Topashka-Ancheva M (2003) Bioaccumulation and damaging action of polymetal industrial dust on laboratory mice Mus musculus alba: I. Analysis of Zn, Cu, Pb, and Cd disposition and mathematical model for Zn and Cd bioaccumulations. Environ Res 91:85–94

    Article  CAS  Google Scholar 

  • UE (2007) Proposed EQS for Water Framework Directive Annex VIII substances

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10:415–421

    Article  CAS  Google Scholar 

  • Vazzana M, Cammarata M, Cooper E, Parrinello N (2002) Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210:231–243

    Article  CAS  Google Scholar 

  • Vieira MC, Torronteras R, Cordoba F, Canalejo A (2012) Acute toxicity of manganese in goldfish Carassius auratus is associated with oxidative stress and organ specific antioxidant responses. Ecotoxicol Environ Saf 78:212–217. doi:10.1016/j.ecoenv.2011.11.015

    Article  CAS  Google Scholar 

  • Vinagre C, Madeira D, Narciso L, Cabral HN, Diniz M (2012) Effect of temperature on oxidative stress in fish: lipid peroxidation and catalase activity in the muscle of juvenile sea bass, Dicentrarchus labrax. Ecol Indic 23:274–279

    Article  CAS  Google Scholar 

  • Wepener V, Van Dyk C, Bervoets L, O’Brien G, Covaci A, Cloete Y (2011) An assessment of the influence of multiple stressors on the Vaal River, South Africa. Phys Chem Earth A/B/C 36:949–962

    Article  Google Scholar 

  • Wirzinger G, Weltje L, Gercken J, Sordyl H (2007) Genotoxic damage in field-collected three-spined sticklebacks (Gasterosteus aculeatus L.): a suitable biomonitoring tool? Mutat Res 628:19–30. doi:10.1016/j.mrgentox.2006.11.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the owners of the different ponds for having allowed this environmental study. R. Amara, E. Kerambrun, K. Gombeau, S. Pierrisnard, D. Orjollet, V. Camilleri, N. Piasecki, M. Blachon and A. Bertrand are acknowledged for their help with field experiments and laboratory analyses. Special thanks to S. Frelon for its strong participation in metal analyses and advice. This work was partly supported by IRSN and the financial support of the 181 DRC 46 Program of the French Ministry for Ecology and Sustainable Development. The authors are grateful to International Science Editing for their help in correcting the English form of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Le Guernic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This experiment was conducted in accordance with the European Commission’s recommendation 2007/526/EC on revised guidelines for the accommodation and care of animals used for experimental and other scientific purposes. The registration number for ethics of INERIS Laboratory is the B60-769-02. For sampling, to avoid bias in the immune responses, no anesthetic overdose can be used for euthanasia of sticklebacks. Indeed, in the 2010/63/EU Directive of the European Parliament and the 22 September 2010 Council about the protection of animals used for scientific purposes, this option is envisaged “if anesthesia is incompatible with the purpose of the procedure”. Therefore, sticklebacks were rapidly sacrificed by cervical dislocation followed by destruction of the brain. This method has been approved by the Committee No. 96-CREMEAP (Regional Ethics Committee in Animal Experimentation of Picardy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Guernic, A., Sanchez, W., Bado-Nilles, A. et al. In situ effects of metal contamination from former uranium mining sites on the health of the three-spined stickleback (Gasterosteus aculeatus, L.). Ecotoxicology 25, 1234–1259 (2016). https://doi.org/10.1007/s10646-016-1677-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1677-z

Keywords

Navigation