Skip to main content
Log in

Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Recently pharmaceuticals have become significant environmental pollutants in aquatic ecosystems, that could affect primary producers such as microalgae. Here we analyzed the effect of pharmaceuticals on the photosynthesis of microalgae commonly found in freshwater—two species of Chlorophyceae and a member of the Eustigmatophyceae, via PAM fluorometry. As pharmaceuticals, three medicines often consumed in households were chosen: (i) fluoxetine, an antidepressant, (ii) propranolol, a β-blocker and (iii) ibuprofen, an anti-inflammatory and analgesic medicine. The EC50 for the quantum yield of photosystem II in phytoplankton acclimated to inorganic phosphorus (Pi)-replete and Pi-limited conditions was estimated. Acute toxicity experiments over a 5 h exposure revealed that Nannochloropsis limnetica was the least sensitive to pharmaceuticals in its photosynthetic yield out of all species tested. Although the estimation of sub-lethal effects can be vital in contrast to that of LC50s, the EC50 values in all species and for all medicines were orders of magnitude higher than concentrations found in polluted surface water. Chlamydomonas reinhardtii was the most sensitive to fluoxetine (EC50 of 1.6 mg L−1), and propranolol (EC50 of 3 mg L−1). Acutodesmus obliquus was most sensitive to ibuprofen (EC50 of 288 mg L−1). Additionally, the sensitivity to the pharmaceuticals changed under a Pi-limitation; the green algae became less sensitive to fluoxetine and propranolol. In contrast, Pi-limited algal species were more sensitive to ibuprofen. Our results suggest that the sensitivity of algae to pharmaceuticals is (i) highly compound- and species-specific and (ii) dependent on the cellular P status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beardall J, Berman T, Heraud P, Kadiri MO, Light BR, Patterson G, Roberts S, Sulzberger B, Sahan E, Uehlinger U, Wood B (2001) A comparison of methods for detection of phosphate limitation in microalgae. Aquat Sci 63:107–121

    Article  CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183

    Article  CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363

    Article  CAS  Google Scholar 

  • Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91

    Article  CAS  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotox Environ Safe 59:309–315

    Article  CAS  Google Scholar 

  • Collos Y (1986) Time-lag algal growth dynamics: Biological constraints on primary production in aquatic environ- ments. Mar Ecol Prog Ser 33:193–206

    Article  CAS  Google Scholar 

  • Commission of the European Communities (1996) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II: environmental risk assessment. Office for Official Publications of the European Communities, Luxembourg

  • Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • EU Decision 495/2015, Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union L 78:40–42

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Haanstra L, Doelman P, Voshaar JHO (1985) The use of sigmoidal dose-response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Heiberger RM (2015) Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1–21. URL http://CRAN.R-project.org/package=HH

  • Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677

    Article  CAS  Google Scholar 

  • Hylland K, Vethaak A (2011) Impact of contaminants on pelagic ecosystems Chapter 10. In: Sánchez-Bayo F, van den Brink PJ, Mann RM (eds) Ecological impacts of toxic chemicals. Bentham Science Publishers Ltd., Beijing, pp 271–287

  • ISO 8692 (2002) Water quality-fresh water algal growth inhibition test with unicellular green algae. International Organization for Standardization, Geneva

    Google Scholar 

  • Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176

    Article  CAS  Google Scholar 

  • Ji YC, Sherrell RM (2008) Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr 53:1790–1804

    Article  CAS  Google Scholar 

  • Juneau P, Qiu B, Deblois CP (2007) Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect: Review. Toxicol Environ Chem 89:609–625

    Article  CAS  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    Article  CAS  Google Scholar 

  • Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ, Liber K (2014) Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philos Trans R Soc B 369(1656):20130578

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  Google Scholar 

  • Kobayashi I, Fujiwara S, Shimogawara K, Sakuma C, Shida Y, Kaise T, Usuda H, Tsuzuki M (2005) High intracellular phosphorus contents exhibit a correlation with arsenate resistance in Chlamydomonas mutants. Plant Cell Physiol 46:489–496

    Article  CAS  Google Scholar 

  • Kohl J-G, Nicklisch A (1988) Ökophysiologie der Algen. Wachstum und Ressourcennutzung. Akademie-Verlag, Berlin

    Google Scholar 

  • Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227

    Article  Google Scholar 

  • Litchman E, Steiner D, Bossard P (2003) Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biol 48:2141–2148

    Article  CAS  Google Scholar 

  • Lukas M, Sperfeld E, Wacker A (2011) Growth rate hypothesis does not apply across co-limiting conditions: cholesterol limitation affects phosphorus homeostasis of an aquatic herbivore. Funct Ecol 25:1206–1214

    Article  Google Scholar 

  • McKinlay JB, Trachtenberg F, Marceau LD, Katz JN, Fischer MA (2014) Effects of patient medication requests on physician prescribing behavior: results of a factorial experiment. Med Care 52:294–299

    Article  Google Scholar 

  • Maszkowska J, Stolte S, Kumirska J, Łukaszewicz P, Mioduszewska K, Puckowski A, Caban M, Wagil M, Stepnowski P, Białk-Bielińska A (2014) Beta-blockers in the environment: Part II. Ecotoxicity study. Sci Total Environ 493:1122–1126

    Article  CAS  Google Scholar 

  • Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille MP (2014) Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res Int. doi:10.1007/s11356-014-3662-5

    Google Scholar 

  • Mojtabai R, Olfson M (2011) Proportion of antidepressants prescribed without a psychiatric diagnosis is growing. Health Aff 30:1434–1442

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Neuwoehner J, Fenner KK, Escher BI (2009) Physiological modes of action of fluoxetine and its human metabolites in algae. Environ Sci Technol 43:6830–6837

    Article  CAS  Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  • North RL, Guildford SJ, Smith REH, Havens SM, Twiss MR (2007) Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52:315–328

    Article  CAS  Google Scholar 

  • OECD guideline 201 (2006) Freshwater alga and cyanobacteria growth inhibition test. Organization for Economic Co-operation and Development, Paris

  • OECD Health Statistics (2014) http://www.oecd.org/els/health-systems/health-data.htm

  • Pączkowska M (2008) Korzystanie z leków i ich dostępność. Raport z badań. (The use of drugs and their availability, study report) Wydział Badań i Analiz Socjologicznych CSIOZ (Department of Research and Sociological Analysis)

  • Peña-Vázquez E, Pérez-Conde C, Costas E, Moreno-Bondi M (2010) Development of a microalgal PAM test method for Cu (II) in waters: comparison of using spectrofluorometry. Ecotoxicology 19:1059–1065

    Article  Google Scholar 

  • Porra RJ, Thomson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted wth four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Ralph PJ, Smith RA, Macinnis-Ng CMO, Seery CR (2007) Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review. Toxicol Environ Chem 89:589–607

    Article  CAS  Google Scholar 

  • Raven JA (2013) RNA function and phosphorus use by photosynthetic organisms. Front Plant Sci 4:536

    Article  Google Scholar 

  • Rehman MS, Rashid N, Ashfaq M, Saif A, Ahmad N, Han JI (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055

    Article  CAS  Google Scholar 

  • Rhee GY (1978) Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limonol Oceanogr 23:10–25

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay Analysis using R. J. Statist. Software, Vol 12, Issue 5

  • Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316

    Article  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  • Serra A, Guasch H, Admiraal W, van der Geest HG, Van Beusekom SA (2010) Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicology 19:770–780

    Article  CAS  Google Scholar 

  • Sjollema SB, van Beusekom SAM, van der Geest HG, Booij P, de Zwart D, Vethaak AD, Admiraal W (2014) Laboratory algal bioassays using PAM fluorometry: effects of test conditions on the determination of herbicide and field sample toxicity. Environ Toxicol Chem 33:1017–1022

    Article  CAS  Google Scholar 

  • Shelly K, Holland D, Beardall J (2010) Assessing nutrient status 955 of microalgae using chlorophyll a fluorescence. In: Suggett DJ, Borowitzka MA, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Heidelberg, pp 223–235

    Chapter  Google Scholar 

  • Sosnowska K, Styszko-Grochwiak K, Gołas J (2009) Leki w środowisku – źródła, przemiany, zagrożenia (Drugs in the environment - source, transformation, threats) – IV Krakowska Konferencja Młodych Uczonych (IV Conference of Young Scientists in Krakow): pp 395–404

  • Spijkerman E (2010) High photosynthetic rates under a co-limitation for inorganic phosphorus and carbon dioxide. J Phycol 46:658–664

    Article  CAS  Google Scholar 

  • Spijkerman E, Stojkovic S, Holland D, Lachmann S, Beardall J (2016) Nutrient induced fluorescence transients (NIFTs) provide a rapid measure of P and C (co-)limitation in a green alga. Eur J Phycol 51:47–58. doi:10.1080/09670262.2015.1095355

    Article  CAS  Google Scholar 

  • van der Aa M, Kommer G (2010) Forecast of pharmaceutical consumption in the Netherlands using demographic projections. In: Kümmerer K, Hempel M (eds) Green and sustainable Pharmacy. Springer, Berlin, pp 201–207

    Google Scholar 

  • van Donk E, Hessen DO (1993) Grazing resistance in nutrient stressed phytoplankton. Oecologia 93:508–511

    Article  Google Scholar 

  • van Donk E, Lürling M, Hessen DO, Lokhorst GM (1997) Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr 42:357–364

    Article  Google Scholar 

  • van Donk E, Peacor S, Grosser K, de Senerpont Domis LN, Lürling M (2015) Pharmaceuticals may disrupt natural chemical information flows and species interactions in aquatic systems: Ideas and perspectives on a hidden global change. Rev Environ Contam T. doi:10.1007/398_2015_5002

    Google Scholar 

  • Wacker A, Piepho M, Spijkerman E (2015) Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability. Eur J Phycol 50:288–300

    Article  CAS  Google Scholar 

  • Wang WX, Dei RCH (2006) Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Environ Pollut 142:303–312

    Article  CAS  Google Scholar 

  • Wennmalm Å, Gunnarsson B (2009) Pharmaceutical management through environmental product labeling in Sweden. Environ Internat 35:775–777

    Article  CAS  Google Scholar 

  • Wiegman S, Barranguet C, Spijkerman E, Kraak MHS, Admiraal W (2003) The role of ultraviolet-adaptation of a marine diatom in photoenhanced toxicity of acridine. Environ Toxicol Chem 22:591–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ES acknowledges the German Research Foundation (DFG, SP 695/5). AW thanks the DFG for funding (WA 2445/8-1) and the post graduate program of the University of Potsdam. MG likes to thank Lukasz Dziewit for consultations. The authors thank both reviewers for their constructive comments and Mark Clegg for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Grzesiuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzesiuk, M., Wacker, A. & Spijkerman, E. Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status. Ecotoxicology 25, 697–707 (2016). https://doi.org/10.1007/s10646-016-1628-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1628-8

Keywords

Navigation