Ecotoxicology

, Volume 24, Issue 4, pp 760–769

Analysing chemical-induced changes in macroinvertebrate communities in aquatic mesocosm experiments: a comparison of methods

  • Eduard Szöcs
  • Paul J. Van den Brink
  • Laurent Lagadic
  • Thierry Caquet
  • Marc Roucaute
  • Arnaud Auber
  • Yannick Bayona
  • Matthias Liess
  • Peter Ebke
  • Alessio Ippolito
  • Cajo J. F. ter Braak
  • Theo C. M. Brock
  • Ralf B. Schäfer
Article

DOI: 10.1007/s10646-015-1421-0

Cite this article as:
Szöcs, E., Van den Brink, P.J., Lagadic, L. et al. Ecotoxicology (2015) 24: 760. doi:10.1007/s10646-015-1421-0

Abstract

Mesocosm experiments that study the ecological impact of chemicals are often analysed using the multivariate method ‘Principal Response Curves’ (PRCs). Recently, the extension of generalised linear models (GLMs) to multivariate data was introduced as a tool to analyse community data in ecology. Moreover, data aggregation techniques that can be analysed with univariate statistics have been proposed. The aim of this study was to compare their performance. We compiled macroinvertebrate abundance datasets of mesocosm experiments designed for studying the effect of various organic chemicals, mainly pesticides, and re-analysed them. GLMs for multivariate data and selected aggregated endpoints were compared to PRCs regarding their performance and potential to identify affected taxa. In addition, we analysed the inter-replicate variability encountered in the studies. Mesocosm experiments characterised by a higher taxa richness of the community and/or lower taxonomic resolution showed a greater inter-replicate variability, whereas variability decreased the more zero counts were encountered in the samples. GLMs for multivariate data performed equally well as PRCs regarding the community response. However, compared to first axis PRCs, GLMs provided a better indication of individual taxa responding to treatments, as separate models are fitted to each taxon. Data aggregation methods performed considerably poorer compared to PRCs. Multivariate community data, which are generated during mesocosm experiments, should be analysed using multivariate methods to reveal treatment-related community-level responses. GLMs for multivariate data are an alternative to the widely used PRCs.

Keywords

Mesocosms Principal Response Curves Generalised linear models Multivariate analysis Community-level effects 

Supplementary material

10646_2015_1421_MOESM1_ESM.pdf (667 kb)
Supplementary material 1 (PDF 667 kb)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eduard Szöcs
    • 1
  • Paul J. Van den Brink
    • 2
    • 3
  • Laurent Lagadic
    • 4
  • Thierry Caquet
    • 4
  • Marc Roucaute
    • 4
  • Arnaud Auber
    • 4
  • Yannick Bayona
    • 4
  • Matthias Liess
    • 5
  • Peter Ebke
    • 6
  • Alessio Ippolito
    • 7
  • Cajo J. F. ter Braak
    • 8
  • Theo C. M. Brock
    • 2
  • Ralf B. Schäfer
    • 1
  1. 1.Institute for Environmental SciencesUniversity Koblenz-LandauLandauGermany
  2. 2.Alterra, Wageningen University and Research CentreWageningenThe Netherlands
  3. 3.Department of Aquatic Ecology and Water Quality ManagementWageningen University, Wageningen University and Research CentreWageningenThe Netherlands
  4. 4.INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Équipe Écotoxicologie et Qualité des Milieux Aquatiques, Agrocampus OuestRennes CedexFrance
  5. 5.Department System EcotoxicologyUFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany
  6. 6.Mesocosm GmbHHomberg (Ohm)Germany
  7. 7.International Centre for Pesticides and Health Risk Prevention (ICPS)University Hospital Luigi SaccoMilanItaly
  8. 8.Biometris, Wageningen UniversityWageningenThe Netherlands

Personalised recommendations