Skip to main content
Log in

Sensitivity of animals to chemical compounds links to metabolic rate

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Ecotoxicological studies have shown considerable variation in species sensitivity for chemical compounds, but general patterns in sensitivity are still not known. A better understanding of this sensitivity is important in the context of environmental risk assessment but also in a more general ecological and evolutionary one. We investigated the metabolic rate or more precise the specific somatic maintenance (expressed in J cm−3 d−1, at a standardised body temperature of 20 °C) on the sensitivity of a species to chemical poisoning. The sensitivity of a species was expressed in terms of its threshold concentration for survival, the no effect concentrations (NEC, in µmol/L). Somatic maintenance data were based on the ‘add-my-pet’ database hosted by the VU University of Amsterdam. NECs were derived from the US-EPA ECOTOX database. We focussed on four pesticides; two that need a metabolic activation, Chlorpyrifos and Malathion, and two without metabolic activation, carbofuran and carbaryl. All four pesticides showed a similar response: a strong negative correlation between the specific somatic maintenance and the NEC. We discuss possible explanations, deviations and ecological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Add my pet (2014) http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/Species.html

  • Baas J, Jager T, Kooijman B (2010) Understanding toxicity as processes in time. Sci Total Environ 408:3735–3739. doi:10.1016/j.scitotenv.2009.10.066

    Article  CAS  Google Scholar 

  • Baird DJ (1993) Can toxicity testing contribute to ecotoxicology? Funct Ecol 7:510–511. doi:10.2307/2390042

    Google Scholar 

  • Baird DJ, van den Brink PJ (2007) Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67:296–301. doi:10.1016/j.ecoenv.2006.07.001

    Article  CAS  Google Scholar 

  • ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R.10: characterisation of dose [concentration]-response for environment. European Chemicals Agency

  • ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. http:/www.epa.gov/ecotox/ (2013) US EPA

  • IPCS (1986a) Environmental health criteria 63, organophosphorous insecticides: a general introduction. International programme on chemical safety, Geneva

  • IPCS (1986b) Environmental health criteria 64, carbamate pesticides: a general introduction. International programme on chemical safety, Geneva

  • Ippolito A, Todeschini R, Vighi M (2012) Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology 21:336–352. doi:10.1007/s10646-011-0795-x

    Article  CAS  Google Scholar 

  • Jager T (2011) Some good reasons to ban ECx and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181. doi:10.1021/es2030559

    Article  CAS  Google Scholar 

  • Jager T, Kooijman SALM (2009) A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18:187–196

    Article  CAS  Google Scholar 

  • Jager T, Heugens EHW, Kooijman SALM (2006) Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology 15:305–314

    Article  CAS  Google Scholar 

  • Jager T, Posthuma L, de Zwart D, van de Meent D (2007) Novel view on predicting acute toxicity: decomposing toxicity data in species vulnerability and chemical potency. Ecotoxicol Environ Saf 67:311–322

    Article  CAS  Google Scholar 

  • Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival—a toxicokinetic–toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540

    Article  CAS  Google Scholar 

  • Kazemi M, Tahmasbi AM, Valizadeh R, Naserian AA, Soni A (2012) Organophosphate pesticides: a general review. Agri Sci Res J 2:512–522

    Google Scholar 

  • Kefford BJ, Palmer CG, Jooste S, Warne MSJ, Nugegoda D (2005) What is meant by “95 % of species”? An Argument for the Inclusion of Rapid Tolerance Testing. Hum Ecol Risk Assess 11:1024–1046

    Google Scholar 

  • Kooijman SALM (1981) Parametric analyses of mortality rates in bioassays. Water Res 15:107–119. doi:10.1016/0043-1354(81)90190-1

    Article  CAS  Google Scholar 

  • Kooijman SALM (1987) A safety factor for LC50 values allowing for differences is sensitivity among species. Water Res 21:269–276

    Article  CAS  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kooijman SALM (2013) Waste to hurry: dynamic energy budgets explain the need of wasting to fully exploit blooming resources. Oikos 122:348–357. doi:10.1111/j.1600-0706.2012.00098.x

    Article  Google Scholar 

  • Kooijman SALM (2014) Metabolic acceleration in animal ontogeny: an evolutionary perspective. J Sea Res. doi:10.1016/j.seares.2014.06.005

    Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996) Some statistical properties of estimates of no-effect concentrations. Water Res 30:1724–1728

    Article  CAS  Google Scholar 

  • Kooijman SALM, Lika K (2014) Resource allocation to reproduction in animals. Biol Rev. doi:10.1111/brv.12082

    Google Scholar 

  • Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Van Gestel CAM, Van Hattum B (2007) Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315–330

    Article  CAS  Google Scholar 

  • Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965. doi:10.1897/03-652.1

    Article  CAS  Google Scholar 

  • Lika K, Kooijman SALM (2011) The comparative topology of energy allocation in budget models. J Sea Res 66:381–391. doi:10.1016/j.seares.2011.10.005

    Article  Google Scholar 

  • Lika K et al (2011a) The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: philosophy and approach. J Sea Res 66:270–277. doi:10.1016/j.seares.2011.07.010

    Article  Google Scholar 

  • Lika K, Kearney MR, Kooijman SALM (2011b) The “covariation method” for estimating the parameters of the standard dynamic energy budget model II: properties and preliminary patterns. J Sea Res 66:278–288. doi:10.1016/j.seares.2011.09.004

    Article  Google Scholar 

  • Lika K, Augustine S, Pecquerie L, Kooijman SALM (2014) The bijection from data to parameter space with the standard DEB model quantifies the supply–demand spectrum. J Theor Biol 354:35–47. doi:10.1016/j.jtbi.2014.03.025

    Article  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi:10.1897/04-025R.1

    Article  CAS  Google Scholar 

  • Newman MC, Ownby DR, Mezin L CA, Powell DC, Christensen TRL, Lerberg SB, Anderson B-A (2000) Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508–515

    CAS  Google Scholar 

  • OECD (1998) Report of the OECD workshop on statistical analysis of aquatic toxicity data, vol 10. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD (2006) Current approaches in the statistical analysis of ecotoxicity data: a guidance to application, vol 54. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  • Posthuma L, Suter GW, Traas TP (2002) Species sensitivity distributions in ecotoxicology. CRC press, Boca Raton

    Google Scholar 

  • Raimondo S, Jackson CR, Barron MG (2010) Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species. Environ Sci Technol 44:7711–7716

    Article  CAS  Google Scholar 

  • Rubach MN, Baird DJ, Van den Brink PJ (2010) A new method for ranking mode-specific sensitivity of freshwater arthropods to insecticides and its relationship to biological traits. Environ Toxicol Chem 29:476–487. doi:10.1002/etc.55

    Article  CAS  Google Scholar 

  • Slooff W, Canton JH, Hermens JLM (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (Sub)acute toxicity tests. Aquat Toxicol 4:113–128

    Article  CAS  Google Scholar 

  • Thurston RV, Gilfoil TA, Meyn EL, Zajdel RK, Aoki T, Veith GD (1985) Comparative toxicity of ten organic chemicals to ten common aquatic species. Water Res 19:1145–1155

    Article  CAS  Google Scholar 

  • Vaal M, van der Wal JT, Hoekstra J, Hermens J (1997) Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. Chemosphere 35:1311–1327. doi:10.1016/S0045-6535(97)00167-7

    Article  CAS  Google Scholar 

  • van den Brink P (2008) Ecological risk assessment: from book-keeping to chemical stress ecology. Environ Sci Technol 42:8999–9004. doi:10.1021/es801991c

    Article  Google Scholar 

  • Wheeler JR, Grista EPM, Leunga KMY, Morritta D, Crane M (2002) Species sensitivity distributions: data and model choice. Marine Pollut Bull 45:192–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the European Union Marie Curie Actions - Research Fellowship Programme 2012 (FP7-PEOPLE-2012-IEF), project acronym BIOME, contract no. 328931.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Baas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baas, J., Kooijman, S.A.L.M. Sensitivity of animals to chemical compounds links to metabolic rate. Ecotoxicology 24, 657–663 (2015). https://doi.org/10.1007/s10646-014-1413-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1413-5

Keywords

Navigation