Skip to main content

Advertisement

Log in

Isolation and characterization of a radiation-resistant bacterium from Taklamakan Desert showing potent ability to accumulate Lead (II) and considerable potential for bioremediation of radioactive wastes

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Radioactive wastes always contain radioactive substances and a lot of Pb compound and other heavy metals, which severely contaminate soils and groundwater. Thus, search for radiation-resistant microorganisms that are capable of sequestering Pb contaminants from the contaminated sites is urgently needed. However, very few such microorganisms have been found so far. In the present study, we discovered a novel Gram-negative bacterium from the arid Taklamakan desert, which can strongly resist both radiation and Pb2+. Phylogenetic and phenotypic analysis indicated that this bacterial strain is closely affiliated with Microvirga aerilata, and was thus referred to as Microvirga aerilata LM (=CCTCC AB 208311). We found that M. aerilata LM can effectively accumulate Pb and form intracellular precipitations. It also keeps similar ability to remove Pb2+ under radioactive stress. Our data suggest that M. aerilata LM may offer an effective and eco-friendly in situ approach to remove soluble Pb contaminants from radioactive wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Shanab RA, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72:7873–7878

    Article  CAS  Google Scholar 

  • Appukuttan D, Seetharam C, Padma N, Rao AS, Apte SK (2011) PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation. J Biotech 154:285–290

    Article  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90

    Article  CAS  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  Google Scholar 

  • Brim H, Osborne JP, Kostandarithes HM, Fredrickson JK, Wackett LP, Daly MJ (2006) Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction. Microbiology 152:2469–2477

    Article  CAS  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  CAS  Google Scholar 

  • Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Cur Opin Biotech 11:280–285

    Article  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SMW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–779

    Article  CAS  Google Scholar 

  • Dose K, Biegerdose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res-Ser 12:221–229

    Article  CAS  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution–a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Guo JK, Lin YB, Zhao ML, Sun R, Wang TT, Tang M, Wei GH (2009) Streptomyces plumbiresistens sp. nov., a lead-resistant actinomycete isolated from lead-polluted soil in north-west China. Int J Syst Evol Microbiol 59:1326–1330

    Article  CAS  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348

    Article  CAS  Google Scholar 

  • Hynninen A, Touze T, Pitkanen L, Mengin-Lecreulx D, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394

    Article  CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Sci Technol 55:105–111

    Article  CAS  Google Scholar 

  • Levinson HS, Mahler I (1998) Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus. FEMS Microbiol Lett 161:135–138

    Article  CAS  Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Cur Opin Biotech 16:254–260

    Article  CAS  Google Scholar 

  • Lloyd JR, Anderson RT, Macaskie LE (2005) Bioremediation of metals and radionuclides. In: Atlas R, Philp J (eds) Bioremediation: applied Microbial Solutions for Real-World Environmental Cleanup. ASM Press, Washington, pp 293–317

    Chapter  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    CAS  Google Scholar 

  • Misra CS, Appukuttan D, Kantamreddi VS, Rao AS, Apte SK (2012) Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioeng Bugs 3:44–48

    Google Scholar 

  • Nakahara H, Asakawa M, Yonekura I, Sato A, Ohshima K, Kitamura M, Kozukue H (1984) Survey of resistance to metals and volatilization activity of Hg-resistant R plasmids in Citrobacter isolated from clinical lesions in Japan. Zentralbl Bakteriol Mikrobiol Hyg A 257:400–408

    CAS  Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J Environ Manage 92:1115–1120

    Article  CAS  Google Scholar 

  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre F, Bagaley D, Rash BA, Park MJ, Earl AA, Shank NC, Small AM, Henk MC, Battista JR, Kampfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  Google Scholar 

  • Riley RG, Zachara J (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Pacific Northwest Lab, Richland

    Google Scholar 

  • Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37:218–224

    Article  CAS  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    Article  CAS  Google Scholar 

  • Sun JM, Liu TS (2006) The age of the Taklimakan Desert. Science 312:1621–1621

    Article  CAS  Google Scholar 

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Leeuwenhoek Int J G 96:171–182

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Leeuwenhoek Int J G 96:115–139

    Article  Google Scholar 

  • Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ, Kim YS, Kim BY, Ka JO (2010) Description of Microvirga aerophila sp. nov and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600

    Article  CAS  Google Scholar 

  • Whicker FW, Hinton TG, MacDonell MM, Pinder JE, Habegger LJ (2004) Environment—Avoiding destructive remediation at DOE sites. Science 303:1615–1616

    Article  CAS  Google Scholar 

  • Wu SC, Peng XL, Cheung KC, Liu SL, Wong MH (2009) Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour Technol 100:4559–4563

    Article  CAS  Google Scholar 

  • Zhang HB, Yang MX, Shi W, Zheng Y, Sha T, Zhao ZW (2007) Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb Ecol 54:705–712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41272257 and 41072181), the China Postdoctoral Science Foundation (Grant No. 20110491233) and the Research Program for BGEG Lab Staff (Grant No. GBL11208).

Conflict of interest

All authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Chun Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zeng, XC., He, Z. et al. Isolation and characterization of a radiation-resistant bacterium from Taklamakan Desert showing potent ability to accumulate Lead (II) and considerable potential for bioremediation of radioactive wastes. Ecotoxicology 23, 1915–1921 (2014). https://doi.org/10.1007/s10646-014-1325-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1325-4

Keywords

Navigation