Skip to main content

Advertisement

Log in

Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The growing use of silver nanoparticles (Ag-NP) triggered an increasing interest in their environmental fate and possible ecotoxicological impacts. To investigate the potential risk of Ag-NP to soil organisms, the springtail Folsomia candida was exposed to Ag-NP (reported diameter size 3–8 nm) and AgNO3 in Lufa 2.2 natural soil for 28 days to determine effects on survival and reproduction. Also, the kinetics of uptake and elimination of Ag were studied for F. candida exposed in Lufa 2.2 soil to Ag-NP (at 168 mg Ag/kg dry soil) and AgNO3 (at 30 and 60 mg Ag/kg dry soil). AgNO3 was toxic with an LC50 was 284 mg Ag/kg dry soil for effects on survival and EC10 and EC50 values of 47.6 and 99.5 mg Ag/kg dry soil, respectively for the effect on reproduction. These values did correspond with porewater concentrations of 0.801, 0.042 and 0.082 mg Ag/l, respectively. No effects on survival and reproduction of Ag-NP were observed up to 673 mg Ag/kg dry soil, although porewater concentration was similar to the EC50 for AgNO3. Exposure to both Ag forms caused a fast uptake of Ag, but the Ag elimination rate was significantly higher for Ag-NP than for AgNO3. Bioaccumulation factor was higher for AgNO3 (on average 5.64) than for Ag-NP (1.12). These findings indicate that silver ions are more toxic than Ag-NP and have a higher potential to accumulate in F. candida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882

    Article  CAS  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  Google Scholar 

  • Choi O, Kanjun Deng K, Kim NJ, Ross L Jr, Surampallie RY, Hua Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  • Cornelis G, Kirby JK, Beak D, Chittleborough D, McLaughlin MJ (2010) A Method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ Chem 7:298–308

    Article  CAS  Google Scholar 

  • Cornelis G, Doolette C, Thomas M, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Amer J 76:891–902

    Article  CAS  Google Scholar 

  • Coutris C, Hertel-AAS T, Lapied E, Joner EJ, Oughton DH (2011) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6:186–195

    Article  Google Scholar 

  • Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333

    Article  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “standard” soil arthropod. Ann Rev Entomol 50:201–222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sun TY, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  • Haanstra L, Doelman P, Oude Voshaar JH (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233

    Article  CAS  Google Scholar 

  • Hirsch MP (1998) Bioaccumulation of silver from laboratory-spiked sediments in the Oligochaete (Lumbriculus variegates). Environ Toxicol Chem 17:605–609

    Article  CAS  Google Scholar 

  • Hobbelen PHF, Koolhaas JE, van Gestel CAM (2004) Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, the Netherlands, taking bioavailability into account. Environ Pollut 129:409–419

    Article  CAS  Google Scholar 

  • Hogstrand C, Wood CM (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–561

    Article  CAS  Google Scholar 

  • ISO (1999) Soil quality—inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ISO 11267, International Standardization Organization, Geneva

  • Janssen MPM, Bruins A, de Vries TH, van Straalen NM (1991) Comparison of cadmium kinetics in four soil arthropod species. Arch Environ Contam Toxicol 20:305–312

    Article  CAS  Google Scholar 

  • Kim AW, Nam SH, An YJ (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Safety 77:64–70

    Article  CAS  Google Scholar 

  • Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  Google Scholar 

  • Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, Prucek R, Bancirova M, Milde D, Zboril R (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem 113:4296–4300

    CAS  Google Scholar 

  • Laban G, Nies LF, Turco RF, Bickham JW, Sepúlveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in Aquatic Environments. Science and Lateral Management, Cambridge University Press, Cambridge

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM, Loureiro S (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241

    Article  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  Google Scholar 

  • Schlich K, Klawonn T, Terytze K, Hund-Rinke K (2013) Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environ Toxicol Chem 32:181–188

    Article  CAS  Google Scholar 

  • Shoults-Wilson WA, Zhurbich OI, McNear DH, Tsyusko OV, Bertsch PM, Unrine JM (2011a) Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20:385–396

    Article  CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011b) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, San Francisco

    Google Scholar 

  • Stroomberg GJ, Ariese F, van Gestel CAM, Van Hattum B, Velthorst NH, van Straalen NM (2004) Pyrene biotransformation and kinetics in the hepatopancreas of the isopod Porcellio scaber. Arch Environ Contam Toxicol 47:324–331

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-bassed nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  Google Scholar 

  • Tsyusko OV, Hardas SS, Shoults-Wilson WA, Starnes CP, Joice G, Butterfield DA, Unrine JM (2012) Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ Pollut 171:249–255

    Article  CAS  Google Scholar 

  • Van der Ploeg MJC, Handy RD, Waalewijn-Kool PL, van den Berg JHJ, Herrera Rivera ZE, Bovenschen J, Molleman B, Baveco JM, Tromp P, Peters RJB, Koopmans GF, Rietjens IMCM, van den Brink NW (2014) Effects of silver nanoparticles (NM-300 K) on Lumbricus rubellus earthworms and particle characterisation in relevant test matrices, including soil. Environ Toxicol Chem 33:743–752

  • Waalewijn-Kool PL, Diez Ortiz M, van Straalen NM, van Gestel CAM (2013) Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environ Pollut 178:59–64

    Article  CAS  Google Scholar 

  • Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, van de Meent D, Dekkers S, de Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work reported here was conducted in the context of NanoFATE, Collaborative Project CP-FP 247739 (2010-2014) under the 7th Framework Programme of the European Commission (FP7-NMP-ENV-2009, Theme 4), coordinated by C. Svendsen and D. Spurgeon of NERC—Centre for Ecology and Hydrology, UK-Wallingford [www.nanofate.eu]. The authors would like to thank R. Vooijs (VU University Amsterdam) for assisting with the gene expression analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis A. M. van Gestel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waalewijn-Kool, P.L., Klein, K., Forniés, R.M. et al. Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida . Ecotoxicology 23, 1629–1637 (2014). https://doi.org/10.1007/s10646-014-1302-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1302-y

Keywords

Navigation