Skip to main content

Advertisement

Log in

Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

A need for environmentally acceptable alternative antifouling (AF) biocides has arisen through restrictions in the use of many common biocides in the European Union through the Biocidal Product Regulation (Regulation EU No. 528/2012). Three such alternatives are triphenylborane pyridine (TPBP), tralopyril and capsaicin. This study aims at extending the available information on the toxicity of these three emerging AF biocides to key marine invertebrates. Here we investigate the toxicity of tralopyril and capsaicin to the early life stages of the mussel Mytilus galloprovincialis and the sea urchin Paracentrotus lividus and also of tralopyril, capsaicin and TPBP to the early life stages of the copepod Tisbe battagliai. The EC50 that causes abnormal development of mussel’s D-veliger larvae and impairs the growth of sea urchin pluteus larvae are respectively 3.1 and 3.0 μg/L for tralopyril and 3,868 and 5,248 μg/L for capsaicin. Regarding the copepod T. battagliai, the LC50 was 0.9 μg/L for tralopyril, 1,252 μg/L for capsaicin and 14 μg/L for TPBP. The results obtained for the three substances are compared to a reference AF biocide, tributyltin (TBT), and their ecological risk evaluated. These compounds pose a lower environmental risk than TBT but still, our results suggest that tralopyril and TPBP may represent a considerable threat to the ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angarano M-B, McMahon RF, Hawkins DL, Schetz JA (2007) Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling 23:295–305. doi:10.1080/08927010701371439

    Article  CAS  Google Scholar 

  • Barroso CM, Reis-Henriques MA, Ferreira M, Gibbs PE, Moreira MH (2005) Organotin contamination, imposex and androgen/oestrogen ratios in natural populations of Nassarius reticulatus along a ship density gradient. Appl Organomet Chem 19:1141–1148. doi:10.1002/aoc.995

    Article  CAS  Google Scholar 

  • Beiras R, Bellas J (2008) Inhibition of embryo development of the Mytilus galloprovincialis marine mussel by organic pollutants; assessment of risk for its extensive culture in the Galician Rias. Aquaculture 277:208–212. doi:10.1016/j.aquaculture.2008.03.002

    Article  CAS  Google Scholar 

  • Bellas J (2008) Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay. Aquat Toxicol 88:308–315. doi:10.1016/j.aquatox.2008.05.011

    Article  CAS  Google Scholar 

  • Bellas J, Beiras R, Mario-Balsa JC, Fernandez N (2005) Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:337–353. doi:10.1007/s10646-004-6370-y

    Article  CAS  Google Scholar 

  • Briant N, Bancon-Montigny C, Elbaz-Poulichet F, Freydier R, Delpoux S, Cossa D (2013) Trace elements in the sediments of a large Mediterranean marina (Port Camargue, France): levels and contamination history. Mar Pollut Bull 73:78–85. doi:10.1016/j.marpolbul.2013.05.038

    Article  CAS  Google Scholar 

  • Cope WG, Bartsch MR, Marking LL (1997) Efficacy of candidate chemicals for preventing attachment of zebra mussels (Dreissena polymorpha). Environ Toxicol Chem 16:1930–1934. doi:10.1002/etc.5620160923

    Article  CAS  Google Scholar 

  • EPA—United States Environmental Protection Agency—Office of Prevention, Pesticides and Toxic Substances (1992) Capsaicin: reregistration eligibility decision (RED) fact sheet http://www.epa.gov/oppsrrd1/REDs/factsheets/4018fact.pdf. Accessed 1 Dec 2013

  • European Commission (2003) European Commission Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market Part II available online at http://ihcp.jrc.ec.europa.eu/our_activities/public-health/risk_assessment_of_Biocides/doc/tgd/tgdpart2_2ed.pdf. Accessed 23 Mar 2014

  • European Commission (2012) Regulation (EU) No 528/2012 of the European Parliament and of the council of 22 May 2012 concerning the making available on the market and use of biocidal products. OJ L167, 1–123

  • Fent K (2006) Worldwide occurrence of organotins from antifouling paints and effects in the aquatic environment. In: Konstantinou I (ed) Antifouling paint biocides. Part O, vol 5., The handbook of environmental chemistrySpringer, Berlin, pp 71–100

    Chapter  Google Scholar 

  • Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus Lividus sea-urchin. Ecotoxicology 10:263–271. doi:10.1023/A:1016703116830

    Article  Google Scholar 

  • Gerigk U, Schneider U, Stewen U (1998) The present status of TBT copolymer antifouling paints versus TBT-free technology. ACS Div Environ Chem 38(1):91–94

    CAS  Google Scholar 

  • Goldberg ED (1986) TBT: an environmental dilemma. Environ Sci Policy Sustain Dev 28:17–44. doi:10.1080/00139157.1986.9928814

    Article  Google Scholar 

  • Hassan AM, Juma HA (1992) Assessment of tributyltin in the marine environment of Bahrain. Mar Pollut Bull 24(8):408–410

    Article  Google Scholar 

  • Hayes WJ Jr (1991) Dosage and other factors influencing toxicity. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology. General principles, vol 1. Academic Press, San Diego, pp 39–105

    Google Scholar 

  • Hazardous Substances Data Bank (HSDB) (2006), Capsaicin; U.S. Department of Health and Human Services, National Institutes of Health, National Library of Medicine: Bethesda, MD http://npic.orst.edu/factsheets/Capsaicintech.html. Accessed 10 Dec 2013

  • His E, Seaman M, Beiras R (1997) A simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31(2):351–355

    Article  CAS  Google Scholar 

  • IMO (1999) Focus on IMO. Anti-Fouling Systems, IMO London www.imo.org. Accessed 14 Oct 2013

  • ISO, 14669 (1999) International Organisation for Standardisation. Water quality—determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). ISO 14669:1999

  • Kaplan MB, Mooney TA, McCorkle DC, Cohen AL (2013) Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLos One 8(5):e63714

    Article  CAS  Google Scholar 

  • Kempen T (2011). Efficacy, chemistry and environmental fate of tralopyril, a non-metal antifouling agent. European Coatings Conference “Marine Coatings III”, Berlin, 28 February 2011

  • Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44:748–751

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. doi:10.1016/s0160-4120(03)00176-4

    Article  CAS  Google Scholar 

  • Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M (2008) A model compound study: the ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays. Environ Pollut 153(3):627–637

    Article  CAS  Google Scholar 

  • Macken A, Byrne HJ, Thomas KV (2012) Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramium tenuicorne. Ecotoxicol Environ Safe 86:101–110. doi:10.1016/j.ecoenv.2012.08.025

    Article  CAS  Google Scholar 

  • Mochida K, Onduka T, Amano H, Ito M, Ito K, Tanaka H, Fujii K (2012) Use of species sensitivity distributions to predict no-effect concentrations of an antifouling biocide, pyridine triphenylborane, for marine organisms. Mar Pollut Bull 64:2807–2814. doi:10.1016/j.marpolbul.2012.09.007

    Article  CAS  Google Scholar 

  • Nyberg E, Poikane R, Strand J, Larse MM, Danielsson S, Bignert A (2003) Tributyltin (TBT) and imposex. HELCOM Core expert group for hazardous substances indicators available online at http://helcom.fi/Lists/Publications/BSEP129B.pdf. Accessed 24 Oct 2013

  • OECD—Environment Directorate Organization for Economic Co-operation and Development (2005) OECD series on Emission Scenario Documents: Emission Scenario Document on Antifouling Products, No. 13, 2005

  • Okamura H, Mieno H (2006) Present status of antifouling systems in Japan: tributyltin substitutes in Japan. In: Konstantinou I (ed) The handbook of environmental chemistry, vol 5., Antifouling paint biocides. Part OSpringer, Berlin, pp 201–212

    Google Scholar 

  • Okamura H, Watanabe T, Aoyama I, Hasobe M (2002) Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells. Chemosphere 46(7):945–951

    Article  CAS  Google Scholar 

  • Okamura H, Kitano S, Toyota S, Harino H, Thomas KV (2009) Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere 74:1275–1278. doi:10.1016/j.chemosphere.2008.11.014

    Article  CAS  Google Scholar 

  • Onduka T, Ojima D, Ito M, Ito K, Mochida K, Fujii K (2013) Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms. Arch Environ Contam Toxicol. doi:10.1007/s00244-013-9945-x

    Google Scholar 

  • Rial D, Beiras R, Vázquez JA, Murado MA (2010) Acute toxicity of a shoreline cleaner, cytosol, mixed with oil and ecological risk assessment of its use on the galician coast. Arch Environ Contam Toxicol 58:407–416. doi:10.1007/s00244-010-9492-7

    Article  Google Scholar 

  • Saco-Alvarez L, Durán I, Ignacio Lorenzo J, Beiras R (2010) Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality. Ecotoxicol Environ Safe 73:491–499. doi: 10.1016/j.ecoenv.2010.01.018

  • Sousa ACA, Pastorinho, Takahashi S, Tanabe S (2014) Organotin compounds: from snails to humans. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutant diseases, remediation and recycling. Environmental chemistry for a sustainable world, vol 4. Springer International Publishing, Zürich. doi:10.1007/978-3-319-02387-8_4

    Google Scholar 

  • Stewart C, de Mora SJ (1990) A review of the degradation of tri(n-butyl)tin in the marine environment. Environ Technol 1(6):565–570. doi:10.1080/0959333900938489

    Article  Google Scholar 

  • Thomas KV (2001) The environmental fate and behaviour of antifouling paint booster biocides: a review. Biofouling 17:73–86

    Article  CAS  Google Scholar 

  • Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88. doi:10.1080/08927010903216564

    Article  CAS  Google Scholar 

  • Tsunemasa N, Okamura H (2011) Effects of organotin alternative antifoulants on oyster embryo. Arch Environ Contam Toxicol 61:128–134. doi:10.1007/s00244-010-9598-y

    Article  CAS  Google Scholar 

  • Tsunemasa N, Tsuboi A, Okamura H (2013) Effects of Organoboron Antifoulants on Oyster and Sea Urchin Embryo Development. Int J Mol Sci 14:421–433. doi:10.3390/ijms14010421

    Article  CAS  Google Scholar 

  • Van Hattum B, Baart A, Boon J (2006) Emission estimation and chemical fate modeling of antifoulants. In: Konstantinou IK (ed) Handbook of Environmental Chemistry, vol 5/O., Antifouling Paint BiocidesSpringer, Berlin, pp 101–120

    Google Scholar 

  • Xu Q, Barrios C, Cutright T, Newby B (2005a) Assessment of antifouling effectiveness of two natural product antifoulants by attachment study with freshwater bacteria. Environ Sci Pollut Res 12(5):278–284. doi:10.1065/espr2005.04.244

    Article  CAS  Google Scholar 

  • Xu Q, Barrios CA, Cutright T, Zhang Newby B-M (2005b) Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. Environ Toxicol 20(5):467–474. doi: 10.1002/tox.20134

  • Zhou X, Okamura H, Nagata S (2006) Applicability of luminescent assay using fresh cells of Vibrio fischeri for toxicity evaluation. J Health Sci 52(6):811–816. doi:10.1248/jhs.52.811

    Article  CAS  Google Scholar 

  • Zhou X, Okamura H, Nagata S (2007) Abiotic degradation of triphenylborane pyridine (TPBP) antifouling agent in water. Chemosphere 67(10):1904–1910. doi:10.1016/j.chemosphere.2006.12.00

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank to Tania Tato and Nuria Sampedro, from ECIMAT Marine Station, for the assistance during the mussel and sea urchin bioassays. We would also like to thank to Ailbhe Macken for supplying the Tisbe battagliai and providing assistance in performing the copepod assay. This work was supported through a PhD grant attributed to Isabel Oliveira (SFRH/BD/71271/2010) by the Portuguese Science Foundation (FCT) funded by the POPH - QREN and co-financed by the European Social Fund and by the Portuguese national funds from MEC.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel B. Oliveira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, I.B., Beiras, R., Thomas, K.V. et al. Acute toxicity of tralopyril, capsaicin and triphenylborane pyridine to marine invertebrates. Ecotoxicology 23, 1336–1344 (2014). https://doi.org/10.1007/s10646-014-1276-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1276-9

Keywords

Navigation