Skip to main content

Advertisement

Log in

What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This article collates published information regarding the in vitro antibacterial activity of both metal and carbon nanoparticles. The aims are to establish a consensus regarding modes of antibacterial activity, and to evaluate the applicability of current knowledge to prediction of likely effects of nanoparticles upon important microbial processes in environmental exposures. The majority of studies suggest that nanoparticles cause disruption to bacterial membranes, probably by production of reactive oxygen species. Contact between the nanoparticle and bacterial membrane appears necessary for this activity to be manifested. Interfacial forces such as electrostatic interactions are probably important in this respect. However, the toxicity of free metal ions originating from the nanoparticles cannot be discounted. Passage of nanoparticles across intact membranes appears to be unlikely, although accumulation within the cytoplasm, probably after membrane disruption, is often observed. To date, published studies have not been designed to mimic natural systems and therefore provide poor understanding of the likely consequences of intentional or unintentional environmental release. The limited studies currently available fail to identify any significant effects at the microbial level of nanoparticles in more complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bard AJ, Holt KB (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223

    Article  CAS  Google Scholar 

  • Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002

    Article  CAS  Google Scholar 

  • Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    CAS  Google Scholar 

  • Bitter W, Kostner M, Latijnhouwers M, de Cock H, Tommassen J (1998) Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol 27:209–219

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Chang Q, Yan L, Chen M, He H, Qu J (2007) Bactericidal mechanism of Ag/Al2O3 against Escherichia coli. Langmuir 23:11197–11199

    Article  CAS  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticel/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Cornfield AH (1977) Effects of addition of 12 metals on carbon dioxide release during incubation of an acid sandy soil. Geoderma 29:199–203

    Article  Google Scholar 

  • Daoud WA, Xin JH, Zhang Y-H (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599:69–75

    Article  CAS  Google Scholar 

  • Dasgupta MK (1994) Silver peritoneal catheters reduce bacterial colonization. Adv Perit Dial 10:195–198

    CAS  Google Scholar 

  • Ekendahl S, Pedersen K (1994) Carbon transformations by attached bacterial populations in granitic groundwater from deep crystalline bed-rock of the Stripa research mine. Microbiology 140:1565–1573

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanotechnol 3:6

    Google Scholar 

  • Fang J, Lyon DY, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642

    Article  CAS  Google Scholar 

  • Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179

    Article  CAS  Google Scholar 

  • Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  • Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrobial Chemother 54:1019–1024

    Article  CAS  Google Scholar 

  • Gabriel MM, Mayo MS, May LL, Simmons RB, Ahearn DG (1996) In vitro evaluation of the efficacy of a silver-coated catheter. Curr Microbiol 33:1–5

    Article  CAS  Google Scholar 

  • Gorgoi SK, Gopinanth P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328

    Article  CAS  Google Scholar 

  • Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Comm 121–123

  • Hamouda T, Baker JR Jr (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol 89:397–403

    Article  CAS  Google Scholar 

  • Hu H, Yu AP, Kim E, Zhao B, ItkiS ME, Bekyarova E, Haddon RC (2005) Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. J Phys Chem B 109:11520–11524

    Article  CAS  Google Scholar 

  • Huang L, Li D, Lin Y, Evans DG, Duan X (2005a) Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinese Sci Bull 50:514–519

    Article  CAS  Google Scholar 

  • Huang L, Li D-Q, Lin Y-J, Wei M, Evans DG, Duan X (2005b) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  Google Scholar 

  • Hunter RJ (1993) Introduction to modern colloid science. Oxford Science Publications, Oxford

    Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • Johansson M, Pell M, Stenström J (1998) Kinetics of substrate-induced respiration (SIR) and denitrification: applications to a soil amended with silver. Ambio 27:40–44

    Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  Google Scholar 

  • Kjelleberg S (1984) Adhesion to inanimate surfaces. In: Marshall KC (ed) Microbial Adhesion and Aggregation, Dahlem Konferenzen. Springer-Verlag, New York, pp 51–70

  • Klupinski TP, Chin Y-P, Traina SJ (2004) Abiotic degradation of pentachloronitrobenzene by Fe(II): reactions on goethite and iron oxide nanoparticles. Environ Sci Technol 38:4353–4360

    Article  CAS  Google Scholar 

  • Kyriacou SV, Brownlow W, Xu X-HN (2004) Nanoparticle optics for direct observation of functions of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147

    Article  CAS  Google Scholar 

  • Li Q, Xie R, Li YW, Mintz EA, Shang JK (2007) Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide. Environ Sci Technol 41:5050–5056

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Qiu X, Burda C (2007) Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A Chem 190:94–100

    Article  CAS  Google Scholar 

  • Liufu S, Xiao H, Li Y (2004) Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technol 145:20–24

    Article  CAS  Google Scholar 

  • Liufu S, Xiao H, Li Y (2005) Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspensions. J Colloid Interface Sci 281:155–163

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  Google Scholar 

  • Long D, Wu G, Chen S (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiation Phys Chem 76:1126–1131

    Article  CAS  Google Scholar 

  • Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem and Biol 12:1227–1234

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366

    Article  CAS  Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Function Mat 15:1708–1715

    Article  CAS  Google Scholar 

  • McHugh SL (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet i:235–240

    Google Scholar 

  • Miyako E, Nagata H, Hirano K, Makita Y, Nakayama K-I, Hirotsu T (2007) Near-infrared laser-triggered carbon nanohorns for selective elimination of microbes. Nanotechnol 18:1–7

    Google Scholar 

  • Mitoraj D, Jańczyk A, Strus M, Kisch H, Stochel G, Heczko PB, Macyk W (2007) Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochem Photobiol Sci 6:642–648

    Article  CAS  Google Scholar 

  • Mohanty B, Verma AK, Claesson P, Bohidar HB (2007) Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot. Nanotechnology 18:445102

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Micrbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Oh S-D, Byun B-S, Choi S-H, Kim MI, Park HG (2007) Radiolytic synthesis of Ag-loaded polystyrene (Ag-PS) nanoparticles and their antimicrobial efficiency against Staphylococcus aureus and Klebsiella pneumoniase. Macromol Res 15:285–290

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend upon the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pedersen K (2001) Diversity and activity of microorganisms in deep igneous rock aquifers of the Fennoscandian shield. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and geochemistry. Wiley-Liss Inc., New York, pp 97–139

    Google Scholar 

  • Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16S rRNA gene diversity of attached and unattached groundwater bacteria along the access tunnel to the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 19:249–262

    CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and bactericidal activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    CAS  Google Scholar 

  • Sano M, Okamura J, Shinkai S (2001) Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schultz-Hardy rule. Langmuir 17:7172–7173

    Article  CAS  Google Scholar 

  • Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Animal Nutrition 61:444–451

    Article  CAS  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  Google Scholar 

  • Singh G, Song L (2007) Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration. J Membrane Sci 303:112–118

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Inter Sci 275:177–185

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxisde nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A 308:60–66

    Article  CAS  Google Scholar 

  • Thayer MM, Flaherty KM, McKay DB (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J Biol Chem 266:2864–2871

    CAS  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194

    Article  CAS  Google Scholar 

  • Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, Ismat Shah S (2007) Antibacterial properties of silver-doped titania. Small 3:799–803

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the toxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • Tian J, Wong KKY, Ho C-M, Lok C-N, Yu W-Y, Che C-M, Chiu J-F, Tam PKH (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136

    CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of Fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  Google Scholar 

  • Xu X, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrance transport in living microbial cells using single naoparticle optics and living cell imaging. Biochemistry 43:10400–10413

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhang L, Yu JC, Yip HY, Li Q, Kwong KW, Xu A-W, Wong PK (2003) Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19:10372–10380

    Article  CAS  Google Scholar 

  • Zhu H, Tao C, Zheng S, Wu S, Li J (2005) Effect of alkyl chain length on phase transfer of surfactant capped Au nanoparticles across the water/toluene interface. Colloids Surf A 256:17–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Nadine Kabengi, Keith Goulding and Steve McGrath for constructive comments on an early version of the manuscript. Rothamsted Research receives grant-aided support from the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Neal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, A.L. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?. Ecotoxicology 17, 362–371 (2008). https://doi.org/10.1007/s10646-008-0217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0217-x

Keywords

Navigation