Skip to main content

Advertisement

Log in

International integration and the determinants of regional development in China

  • Published:
Economic Change and Restructuring Aims and scope Submit manuscript

Abstract

Concerns about the duration of China’s growth and hence the question of a permanent significant contribution of China to world economic growth relate, amongst other things, to the problem of reducing regional disparity in China. While China’s high average growth is driven by a small number of rapidly developing provinces, the majority of provinces have experienced a more moderate development. To obtain broad continuos growth it is important to identify the determinants of provincial growth. Therefore, we introduce a stylized model of regional development which is characterized by two pillars: (1) International integration indicated by FDI and/or trade lead to imitation of international technologies, technology spill overs and temporary dynamic scale economies, and (2) domestic factors indicated by human and real capital available through interregional factor mobility. Using panel data analysis and GMM estimates our empirical analysis supports the predictions from our theoretical model of regional development. Positive and significant coefficients for FDI and trade support the importance of international integration and technology imitation. A negative and significant lagged GDP per capita indicates a catching up, non steady state process across China’s provinces. Highly significant human and real capital identifies the importance of these domestic growth restricting factors. However, other potentially important factors like labor or government expenditures are (surprisingly) insignificant or even negative. Extending the model using an unbalanced panel leads to a positive effect of the quality of governance and institutions on development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Average growth of the last 10 years is 8.01%, Source: Penn World Table 6.2.

  2. With a GDP per capita (PPP) of $6,300 the People’s Republic of China was ranked 118th of 232 countries in 2005; Source: The World Factbook 2006.

  3. See e.g. Fujita/Thisse (2002 Chap. 11), or Kelly/Hageman (1999).

  4. See Findlay (1973, 1984).

  5. The interest factor is one + interest rate.

  6. The firm has to determine optimal factor inputs by maximizing profits. Since all capital services have to be paid in terms of exports, the full capital costs include several components like government taxes on output γ i or transaction costs for exports.

  7. \(Y=yA^{-{\frac{1} {1-\beta }}}.\) see also Appendix 1e.

  8. There is a broad literature on international technology diffusion that has suggested various channels. Eaton/Kortum (1999) discuss trade as a channel of diffusion in a multi-country setting. See also Coe/Helpman (1995) who link the direction of technology diffusion to exports. Keller (1998) however has some doubts about the link between trade and diffusion.

  9. E.g. Martin (1999) has analyzed the effects of public policies and infrastructure to the growth performance of a regional economy.

  10. This idea draws back to the well-known Veblen-Gerschenkron hypothesis (Veblen (1915) and Gerschenkron (1962)). Later Nelson/Phelps (1966), Gries/Wigger (1993), Gries/Jungblut (1997) and Gries (2002) further developed these ideas in the context of catching-up economies. The catching-up hypothesis has been tested successfully and robustly by Benhabib/Spiegel (1994), de la Fuente (2002), and Engelbrecht (2003).

  11. Note that \({\mathcal{F}}(t)\) and G(t) are normalized values transformed by an international technology index factor \(A(t)^{{\frac{1} {1-\beta }}},\) and A is growing at a given constant rate n. See also Appendix 1e.

  12. Finally, examining the determinants of growth several studies present empirical evidence that there is also an effect of institutions and the quality of governance on growth Basu (2006), Barro (1997), Knack and Keefer (1997a,b), Mauro (1995), Svensson (1998), Chong and Calderon (2000), Hall and Jones (1999), Gradstein (2004) and the series of papers “Governance Matters” (Kaufmann et al. 1999, 2002, 2004, 2005, 2006, 2007).

  13. For the dynamic catching-up-spill-over equation we assume that G and \( {\mathcal{F}}\) are sufficiently large for positive upgrading.

  14. See Appendix 1f.

  15. The dynamic catching-up-spill-over equation contains a scaling problem if H and K are taken as absolute values. As the region is assumed to remain backward, the values of γ, φ, H and K are assumed to be sufficiently small. See Appendix 2 for the derivatives.

  16. We assume that the contribution of FDI to production β as well as the externality effect of FDI on technology δ are sufficiently small. This also reflects the already mentioned assumption of a rather limited spill-over effect of FDI on the relative catching up process.

  17. In Appendix 3 we show that the government can maximize the final development position of the economy and the speed of growth by choosing an optimal level of government expenditure for public infrastructure.

  18. Since \(\left({\frac{y^{\prime }} {y}}\right) ^{2}\) is rather small we can approximate the process.

  19. To simplify we consider only linear and log linear processes.

  20. See Gujarati (2003) p. 637.

  21. Monte Carlo results on the finite sample properties of the GMM estimator for dynamic panel data models have been reported by Arellano and Bond (1991), Kiviet (1995), Ziliak (1997), Blundell and Bond (1998) and Alonso-Borrego and Arellano (1999), amongst others.

  22. The choice of the period makes sense for two reasons. First, the early 1990s saw the latest wave of international integration policy in China. Also in the early 1990s the Chinese government started to prepare for WTO accession and a further opening up of the economy. Second, with respect to some important indicators some provinces would have had to be excluded if the time period had been expanded to earlier years.

  23. Barro and Lee (2001) argue that enrollment rates not adequately measure the aggregate stock of human capital available contemporaneously as an input to production and alternatively average years of schooling should be used. However, a multiplicity of empirical studies uses enrollment rates with plausible results supporting the validity of this variable. Since data on average years of schooling is available only on country and not on provincial level we decide to use enrollment rates as a proxy for human capital.

  24. The empirical literature on the new economic geography suggests many variables which could function as a proxy for agglomeration. We concentrate on population density and the share of urbanization. Those measures are widely used and valid proxies for agglomeration (see Büttner et al., Sala-i-Martin et al., Brüllhart and Sbergarmi).

  25. We calculate also the OLS estimates of the three models with FDI and trade. The results are consistent with the GMM results concerning the signs and significance values in large part. In contrast to the dynamic estimation technique in the first and second model only the human capital coefficients shows a negative significant effect. Agglomeration and urbanization exhibit a positive significant effect on growth. A possible explanation for these differences are the omitted province specific effects, so we concentrate are interpretation on the GMM results. Additionally, we use the Husmann test to check for unobserved heterogeneity between the provinces. If the null hypothesis is significant a simple OLS estimator is consistent and efficient, whereas the GMM estimator is consistent in all cases. For our model the null hypothesis is rejected so that the GMM estimation should be favored.

  26. We also checked for multicollinearity of all other variables. Additionally we calculated the VIFs for both models. These are: y 3.65, K 1.23, POP 1.05, HC 1.41, FDI 1.19, GOV1 1.75, GOV2 1.79, POPKM2 1.67, URBAN 2.76, mean VIF 1.83 for the model with FDI, y 3.40, K 1.24, POP 1.05, HC 1.43, T 1.09, GOV1 1.73, GOV2 1.74, POPKM2 1.68, URBAN 2.69, mean VIF 1.78 for the model with trade and y 3.67, K 1.17, POP 1.09, HC 1.35, T 1.34, GOV1 1.83, GOV2 2.10, POPKM2 1.76, URBAN 3.10, MARKET 1.24, mean VIF 1.87 for the model with marketisation.

  27. To get a better impression of the relationship between growth and the lagged GDP per capita, we plotted these variables for the whole panel as well as for each province. All scatter plots suggest a negative linear relationship between these variables which is consistent to our results. Additionally, we run a simple regression in logs to investigate a non linear relationship however the results fell off in quality with regard to the significance level of the linear regression which is again an indication for a linear relationship. The results are available upon request.

  28. Using employees instead of population leads also to insignificant results.

  29. Using secondary school enrollment instead of enrollment in higher education leads to the same results.

References

  • Alonso-Borrego C, Arellano M (1999) Symmetrically normalized instrumental-variable estimation using panel data. J Bus Econ Stat 17(1):36–49

    Google Scholar 

  • Anderson TW, Hsiao C (1981) Estimation of dynamic models with error components. J Am Stat Assoc 76(375):598–606

    Article  Google Scholar 

  • Arayama Y, Miyoshi K (2004) Regional diversity and sources of economic growth in China

  • Arellano M (1989) A note on the Anderson–Hsiao estimator for panel data. Econ Lett 31:337–341

    Article  Google Scholar 

  • Arellano M, Bover O (1995) Another look at the instrumental variable estimation of error-components models. J Econ 68:29–51

    Article  Google Scholar 

  • Arrow KJ (1962) The economic implications of learning-by-doing. Rev Econ Stud 29(1):155–173

    Article  Google Scholar 

  • Bao S, Chang GH, Sachs JD, Woo WT (2002) Geographic factors and China’s regional development under market reforms, 1978–1998. China Econ Rev 13:89–111

    Article  Google Scholar 

  • Barro RJ (1997) Determinants of economic growth: a cross-country empirical study. MIT Press, Cambridge, MA

    Google Scholar 

  • Barro RJ, Lee JW (2001) International data on educational attainment: updates and implications. Oxford Econ Pap 53(3):541–563

    Article  Google Scholar 

  • Basu SR (2006) Economic growth, well-being and governance under economic reforms: evidence from Indian states. J World Econ Rev 1/2:127–149

    Google Scholar 

  • Benhabib J, Spiegel MM (1994) The role of human capital in economic development—evidence from aggregate cross-country data. J Monet Econ 34:143–173

    Article  Google Scholar 

  • Black D, Henderson V. (1999b), A theory of urban growth. J Political Econ 107:252–284

    Article  Google Scholar 

  • Blundell R, Bond S (1998) GMM estimation with persistent panel data: an application to production functions, IFS working papers W99/04, Institute for Fiscal Studies

  • Blundell R, Bond S, Windmeijer F (2000), Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator, IFS working papers W00/12, Institute for Fiscal Studies

  • Bond S, Hoeffler A, Temple J (2001) GMM estimation of empirical growth models, CEPR discussion paper No. 3048, Centre for Economic Policy Research

  • Brülhart M, Sbergarmi F (2009) Agglomeration and growth—cross-country evidence. J Urban Econ 65:48–63

    Article  Google Scholar 

  • Büttner T, Schwager R, Stegarescu D (2004), Agglomeration, population size, and the cost of providing public services: an empirical analysis for german states, discussion paper No. 04-18, ZEW Mannheim

  • Chen B, Feng, Y (2000), Determinants of economic growth in China: private enterprise, education, and openness. China Econ Rev 11:1–15

    Article  Google Scholar 

  • Chen J, Fleisher BM (1996), Regional income inequality and economic growth in China. J Comp Econ 22(15): 141–164

    Article  Google Scholar 

  • Cheung K, Lin P (2004) Spillover effects of FDI on innovation in China, evidence from the provincial data. China Econ Rev 15:25–44

    Article  Google Scholar 

  • Cai F, Wang D, Du Y (2002), Regional disparity and economic growth in China. The impact of labor market distortions. China Econ Rev 13:197–212

    Article  Google Scholar 

  • Choi H, Li H (2000), Economic development and growth convergence in China. J Int Trade Econ Dev 9(1):37–54

    Article  Google Scholar 

  • Chong A, Calderon C (2000) Causality and feedback between institutional measures and economic growth. Econ Politics 12:69–82

    Article  Google Scholar 

  • Chow G (2006) Are Chinese official statistics reliable? CESifo Econ Stud 52(2):396–414

    Article  Google Scholar 

  • Coe DT, Helpman E (1995) International R & D spillovers. Eur Econ Rev 39(5):859–887

    Article  Google Scholar 

  • de la Fuente A (2002) On the sources of convergence: a close look at the Spanish regions. Eur Econ Rev 46:569–599

    Article  Google Scholar 

  • Démurger S (2001) Infrastructure development and economic growth: an explanation for regional disparities in China. J Comp Econ 29(1): 95–117

    Article  Google Scholar 

  • Eaton J, Kortum S (2001) Technology, trade and growth: a unified framework. Eur Econ Rev 45(4–6):742–755

    Article  Google Scholar 

  • Engelbrecht H-J (2003) Human capital and economic growth: gross section evidence for OECD. Econ Rec 79(special issue):40–51

    Google Scholar 

  • Fan G, Wang X, Zhu H (2007), NERI index of marketisation for China’s provinces: 2006 report (in Chinese), Beijing: Economic Science Press

  • Findlay R (1973) International trade and development theory. Columbia University Press, New York

    Google Scholar 

  • Findlay R (1984), Growth and development in growth models. In: Jones RW, Kenen PB (eds) Handbook of international economics, vol 1. Elsevier, North Holland, pp 185–236

    Chapter  Google Scholar 

  • Fleisher BM, Li H, Zhao MQ (2005) Regional inequality and productivity growth in China: the role of foreign direct investment, infrastructure, and human capital. Working paper: Ohio State University

  • Fujita M, Thisse J (2002) Economics of agglomeration. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gerschenkron A (1962) Economic backwardness in historical perspective. Harvard University Press, Cambridge MA

    Google Scholar 

  • Glaeser EL, Kallal HD, Scheinkman J, Schleifer A (1992) Growth in cities. J Political Econ 100:1126–1152

    Article  Google Scholar 

  • Gradstein M (2004) Governance and growth. J Dev Econ 73:505–518

    Article  Google Scholar 

  • Gries T (2002) Catching-up, falling behind and the role of FDI: a model of endogenous growth and development. South African J Econ 70(4):588–611

    Article  Google Scholar 

  • Gries T, Jungblut S (1997) Catching-up and structural change. Econ Int 50(4):561–82

    Google Scholar 

  • Gries T, Wigger B (1993) The dynamics of upgrading or how to catch up: imitation and growth of newly industrialized countries. Econ Int 46(4):377–87

    Google Scholar 

  • Grossman GM, Helpman E (1991) Innovations and growth in global economy. MIT Press, Cambridge, MA

    Google Scholar 

  • Gujarati DN (2005) Basic econometrics, 4ed. McGraw-Hill, Boston

    Google Scholar 

  • Gundlach E (1997) Regional convergence of output per worker in China—a neoclassical interpretation. Asian Econ J 11(4):423–442

    Article  Google Scholar 

  • Hall R, Jones C (1999) Why do some countries produce so much more output per worker than others? Q J Econ 114:83–116

    Article  Google Scholar 

  • Hsueh T, Li Q (1999) China’s national income 1952–1995. Westview Press, Collorado, Oxford

    Google Scholar 

  • Huang J, Kuo C, Kao A (2005), The inequality of regional economic development in China between 1991 and 2001. J Chin Econ Bus Stud 1(3):273–285

    Article  Google Scholar 

  • Jacobs J (1969) The economy of cities. Vintage Books, New York

    Google Scholar 

  • Jian T, Sachs JD, Warner AM (1996) Trends in regional inequality in China. China Econ Rev 7(1):1–21

    Article  Google Scholar 

  • Judson RA, Owen AL (1996) Estimating dynamic panel data models: a practical guide for macroeconomists. Econ Lett 65(1):9–15

    Article  Google Scholar 

  • Kanbur R, Zhang X (2005) Fifty years of regional inequality in China a journey through central planning, reform, and openness. Rev Dev Econ 9(1):87–106

    Article  Google Scholar 

  • Kaufmann D, Kraay A, Zoido-Lobatón P (1999) Governance matters. World bank policy research working paper No. 2196, Washington, DC

  • Kaufmann D, Kraay A, Zoido-Lobatón P (2002)Governance matters II—updated indicators for 2000/01. World bank policy research working paper No. 2772

  • Kaufmann D, Kraay A, Mastruzzi M (2004) Governance matters III: governance indicators for 1996, 1998, 2000, and 2002. World Bank Econ Rev 18:253–287

    Article  Google Scholar 

  • Kaufmann D, Kraay A, Mastruzzi M (2005). Governance matters IV: governance indicators for 1996–2004. World bank policy research working paper No. 3630

  • Kaufmann D, Kraay A, Mastruzzi M. (2006b) Governance matters V: aggregate and individual governance indicators for 1996–2005. World bank policy research working paper No. 4012

  • Kaufmann D, Kraay A, Mastruzzi M (2006b). Governance matters V: aggregate and individual governance indicators for 1996–2006, World bank policy research working paper No. 4280

  • Keller W (1998) Are international R&D spillovers trade-related? Analyzing spillovers among randomly matched trade partners. Eur Econ Rev 42:1469–1481

    Article  Google Scholar 

  • Kelly M, Hageman A (1999) Marshallian externalities in innovation. J Econ Growth 4:39–54

    Article  Google Scholar 

  • Kiviet JF (1995) On bias, inconsistency, and efficiency of various estimators in dynamic panel data models, J Econ, Elsevier 68(1):53–78

    Google Scholar 

  • Knack S, Keefer P (1997a) Why don’t poor countries catch up? A cross-national test of an institutional explanation. Econ Inq 35:590–602

    Article  Google Scholar 

  • Knack S, Keefer P (1997b) Does social capital have an economic payoff? A cross-country investigation. Q J Econ 112:1251–1288

    Article  Google Scholar 

  • Li S, Zhao R (1999) On China’s Income distribution again. Econ Res J:3–17

    Google Scholar 

  • Lin JY, Wang G, Zhao Y (2004), Regional inequality and labor transfers in China. The University of Chicago, Chicago

    Google Scholar 

  • Lewis MA. (1954) Economic development with unlimited surplus of labor. Manchester School Econ Soc Stud 22:139–191

    Article  Google Scholar 

  • Madariaga N, Poncet S (2005), FDI impact on growth—-spatial evidence from China, working paper, CEPII research center

  • Markusen JR, Venables AJ (1999) Foreign direct investment as a catalyst for industrial development. Eur Econ Rev 43:335–356

    Article  Google Scholar 

  • Marshall A (1920) Principles of economics. Macmillan, London

    Google Scholar 

  • Martin P, Ottaviano GIP (1999) Growing locations in a model of endogenous growth. Eur Econ Rev 43:281–302

    Article  Google Scholar 

  • Martin R (1999) Public policies, regional inequalities and growth. J Public Econ 73:85–105

    Article  Google Scholar 

  • Mauro P (1995) Corruption and growth. Q J Econ 681–712

  • Miyamoto K, Liu H (2005) An analysis of the determinants of provincial level performance in China’s economy. Comp Econ Stud 47(3):520–542

    Article  Google Scholar 

  • NBS (2005) China compendium of statistics 1949–2004. China Statistical Press, Beijing

    Google Scholar 

  • NBS (various years) China statistical yearbook. China Statistical Publishing House, Beijing

  • Nelson RR, Phelps ES (1966) Investment in humans, technological diffusion, and economic growth, Cowles foundation paper 236. Reprinted from Am Econ Rev 56(2):69–75

    Google Scholar 

  • Nickel S (1981) Biases in dynamic models with fixed effects. Econometrica 46(6):1417–1426

    Article  Google Scholar 

  • Pedroni P, Yao JY (2006) Regional income divergence in China. J Asian Econ 17(2):294–315

    Article  Google Scholar 

  • Rawski T (2001) China by the numbers: how reform affected chinese economic statistics. China Perspect 33:25–34

    Google Scholar 

  • Raiser M (1998) Subsidising inequality: economic reforms, fiscal transfers and convergence across chinese provinces. J Dev Stud 34:1–26

    Article  Google Scholar 

  • Romer PM (1986) Increasing returns and long-run growth. J Political Econ 94(5):1002–1037

    Article  Google Scholar 

  • Romer PM (1990) Endogenous technological change. J Political Econ 98(5 part 2):71–102

    Google Scholar 

  • Sala-i-Martin X, Doppelhofer G, Miller RI (2004) Determinants of long-term growth: a Bayesian averaging of classical estimates (BACE) approach. Am Econ Rev 94(4):813–835

    Article  Google Scholar 

  • Svensson J (1998) Investment, property rights, and political instability: theory and evidence. Eur Econ Rev 42:1317–1341

    Article  Google Scholar 

  • Veblen T (1915) Imperial Germany and the industrial revolution. London

  • Wan G (1998) An empirical analysis of inhabitants’ income differential among China’s rural areas and its changes. Econ Res J 36–41

  • Wang Z (2003) WTO accession, the “Greater China” free trade area, and economic integration across the Taiwan Strait. China Econ Rev 14:316–349

    Article  Google Scholar 

  • Wang Y, Yao Y (2003) Sources of China’s economic growth 1952–1999: incorporating human capital accumulation. China Econ Rev 14:32–52

    Article  Google Scholar 

  • Wang X, Fan G, Zhu H (2007) Marketisation in China: progress and contribution to growth. In: Garnaut R, Song L (eds) China: linking markets for growth. ANU E Press, Asia Pacific Press and Social Sciences Academic Press, China

    Google Scholar 

  • Wu Y (1999) Income disparity and convergence in China’s regional economies. University of Western Australia Discussion Paper 9915

  • Yao S, Zhang Z (2001a) Regional growth in China under economic reforms. J Dev Stud 38(2):167–186

    Article  Google Scholar 

  • Yao S, Zhang Z (2001b) On regional inequality and diverging clubs—a case study of contemporary China. J Comp Econ 29:466–484

    Article  Google Scholar 

  • Yao S, Zhang Z (2002) Economic growth and diverging clubs—a case study of the chinese regions. Appl Econ Lett 9:833–836

    Article  Google Scholar 

  • Yao S (2006) On economic growth, FDI and exports in China. Appl Econ 38(3):339–351

    Article  Google Scholar 

  • Yudong Y, Weeks M (2003) Provincial income convergence in China, 1953–1997: a panel data approach. Econ Rev 1/2003 22(1):59–77

    Article  Google Scholar 

  • Ziliak JP (1997) Efficient estimation with panel data when instruments are predetermined: an empirical comparison of moment-condition estimators. J Bus Econ Stat Am Stat Assoc 15(4):419–431

    Google Scholar 

  • Zhang Z, Liu A, Yao S (2001) Convergence of China’s regions incomes 1952–1997. China Econ Rev 12:243–258

    Article  Google Scholar 

  • Zhang KH, Song S (2000) Promoting exports: the role of inward FDI in China. China Econ Rev 11:385–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gries.

Appendix

Appendix

1.1 Appendix 1

Determining the aggregate production level of the region:

$$ \begin{aligned} y_{i} &=A_{i}H_{i}^{\alpha }\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}y_{i}\right) ^{\beta }K_{i}^{1-\alpha -\beta } \\ y_{i} &=A_{i}{}^{{\frac{1} {1-\beta }}}H_{i}^{{\frac{\alpha } {1-\beta }}} \left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}} \right) ^{{\frac{\beta } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}} \\ Y_{i} &={\frac{y_{i}} {A^{{\frac{1} {1-\beta }}}}} \quad \hbox {hence}\quad Y_{i} =\omega _{i}^{{\frac{1} {1-\beta }}} H_{i}^{{\frac{\alpha } {1-\beta }}} \left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}\right) ^{{\frac{\beta}{1-\beta}}} K_{i}^{{\frac{1-\beta -\alpha } { 1-\beta }}}\\ \end{aligned} $$

1.2 Appendix 2

Steady state determination and reactions of ω * i when H i K i , τ i , τ ex i and γ are changing:

Solve for \(\dot{\omega}\) by plugging in:

$$ \begin{aligned} \dot{\omega}_{i}(t) &=G(t)_{i}^{\delta _{G}}F(t)_{i}^{\delta _{F}}-\omega (t), \\ \dot{\omega}_{i}(t) &=\gamma ^{\delta _{G}}\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}\right) ^{\delta _{F}}y(t)_{i}^{\delta }-\omega (t)\\ y_{i}&=\omega _{i}^{{\frac{1} {1-\beta }}}H_{i}^{{\frac{\alpha } {1-\beta }}}\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}} \right) ^{{\frac{\beta } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\\ \dot{\omega}_{i}(t) &=\gamma ^{\delta _{G}}\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}\right) ^{\delta _{F}} \left[ \omega (t)_{i}^{{\frac{1} {1-\beta }}}H_{i}^{{\frac{\alpha } {1-\beta }}}({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}})^{ {\frac{\beta } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{\delta }-\omega (t)\\ \dot{\omega}_{i}(t) &=\gamma ^{\delta _{G}}\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}\right) ^{\delta _{F}+{\frac{\beta } {1-\beta }}\delta }\left[ H_{i}^{{\frac{\alpha } {1-\beta }} }K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{\delta }\omega (t)_{i}^{ {\frac{\delta } {1-\beta }}}-\omega (t).\\ {\frac{d\dot{\omega}_{i}(t)} {d\omega (t)}} &={\frac{\delta } {1-\beta }}\Psi _{i} \left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } { 1-\beta }}}\right] ^{\delta }\omega (t)_{i}^{{\frac{\delta -1+\beta } {1-\beta }} }-1<0\end{aligned} $$

as H i and K i are assumed to be sufficiently small

To simplify, this equation is rewritten as

$$ \begin{aligned} \dot{\omega}_{i}(t) &=\Psi _{i}\left[ H_{i}^{\frac{\alpha }{1-\beta } }K_{i}^{\frac{1-\beta -\alpha }{1-\beta }}\right] ^{\delta }\omega (t)^{ \frac{\delta }{1-\beta }}-\omega (t)\quad\text{ see\; (5)}\\ \hbox{with}\quad \Psi _{i} &:=\gamma ^{\delta _{G}}\left({\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta }{\tau _{i}r}}\right) ^{\delta _{F}+\frac{\beta }{1-\beta }\delta }. \end{aligned} $$
(32)

solve for the steady state position:

$$ \begin{aligned} 0 &=\dot{\omega}_{i}(t)=\Psi _{i}\left[ H_{i}^{{\frac{\alpha } {1-\beta }} }K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{\delta }\omega ^{{\frac{ \delta } {1-\beta }}}-\omega \\ \omega &=\Psi _{i}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{ 1-\beta -\alpha } {1-\beta }}}\right] ^{\delta }\omega ^{{\frac{\delta } { 1-\beta }}} \\ \omega ^{*} &=\Psi _{i}^{{\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\\\Psi _{i}^{{\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}}&=\gamma _{i}^{\delta _{G}{\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}}\left({ \varphi }_{i}\right) ^{{\frac{\delta _{F}\left(1-\beta \right) +\delta \beta} {(1-\beta -\delta)}}}\\ \omega _{i}^{*}&=\gamma _{i}^{\delta _{G}{\frac{\left(1-\beta \right) } { (1-\beta -\delta)}}}\left({\varphi }_{i}\right) ^{{\frac{\delta _{F}\left(1-\beta \right) +\delta \beta } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{ \alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{ \delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\hbox {\qquad see\qquad } \left(\hbox {6}\right) \end{aligned} $$

Steady state reactions \({{{\frac{\partial \omega _{i}^{*}} {\partial K_{i}}} }}\):

$$ \begin{aligned} \omega _{i}^{*} &=\Psi _{i}^{{{\left( 1-\beta \right) } {(1-\beta -\delta )}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left( 1-\beta \right) } {(1-\beta -\delta )}}} \\ {{{\frac{\partial \omega _{i}^{*}} {\partial K_{i}}}}} &={{\frac{\delta (1-\beta )} {1-\beta -\delta }} {\frac{1-\beta -\alpha } {1-\beta }}\Psi _{i}^{ {\frac{1-\beta } {1-\beta -\delta }}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }} } K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left( 1-\beta \right) } {(1-\beta -\delta )}}-1}K_{i}^{{\frac{1-\beta -\alpha } { 1-\beta }}-1}}H_{i}^{{\frac{\alpha } {1-\beta }}} \\ &={{\frac{\delta (1-\beta -\alpha )} {1-\beta -\delta }}\omega _{i}^{*}K_{i}^{-1}>{0,}}\hbox {{\quad }} \\ \end{aligned} $$

Steady state reactions \({{{\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}}}}}\):

$$ \begin{aligned} {\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}}} &={\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}\Psi _{i}^{{\frac{\delta } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}{\frac{\partial \Psi _{i}} {\partial \tau _{i}}} \\ {\frac{\partial \Psi _{i}} {\partial \tau _{i}}} &=-\left[ \delta _{F}+{\frac{ \beta } {1-\beta }}\delta \right] \gamma ^{\delta _{G}}\left({{\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}}\right) ^{\delta _{F} +{\frac{\beta } {1-\beta }}\delta -1}{{\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}}\tau _{i}^{-1} \\ &=-\left[ \delta _{F}+{\frac{\beta } {1-\beta }}\delta \right] \gamma ^{\delta _{G}} \left({{\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } { \tau _{i}r}}}\right) ^{\delta _{F}+{\frac{\beta } {1-\beta }}\delta }\tau _{i}^{-1} =-\left[ \delta _{F}+{\frac{\beta } {1-\beta }}\delta \right] \Psi _{i}\tau _{i}^{-1}\\ {\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}}} &=-{\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}\Psi _{i}^{{\frac{\delta } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\left[ \delta _{F}+{\frac{\beta } {1-\beta }}\delta \right] \Psi _{i}\tau _{i}^{-1} \\ &=-\left[ {\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}\right] \left[ \delta _{F}+{\frac{\beta} {1-\beta }}\delta \right] \omega ^{*}\tau _{i}^{-1}<0\hbox {\qquad see\qquad }\left(7\right) \\ \end{aligned} $$

Steady state reactions \({{{\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}^{ex}}}}}\):

$$ \begin{aligned} {\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}^{ex}}}&={\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}\Psi _{i}^{{\frac{\delta } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\frac{\partial \Psi _{i}} {\partial \tau _{i}^{ex}}\\ {\frac{\partial \Psi _{i}} {\partial \tau _{i}^{ex}}} &=-\left[ \delta _{F} + {\frac{\beta } {1-\beta }}\delta \right] \gamma ^{\delta _{G}}\left({{\frac{ (1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}}\right) ^{\delta _{F} +{\frac{\beta } {1-\beta }}\delta -1}{{\frac{\beta } {\tau _{i}r}}} \\ &=-\left[ \delta _{F}+{\frac{\beta } {1-\beta }}\delta \right] \Psi _{i}(1-\tau _{i}^{ex})^{-1} \\ {\frac{\partial \omega _{i}^{*}} {\partial \tau _{i}^{ex}}} &=-{\frac{ \left(1-\beta \right) } {(1-\beta -\delta)}}\Psi _{i}^{{\frac{\delta } { (1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } {1-\beta }}}K_{i}^{{\frac{ 1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\left[ \delta _{F}+{\frac{\beta } {1-\beta }} \delta \right] \Psi _{i}(1-\tau _{i}^{ex})^{-1} \\ &=-{\frac{\left(1-\beta \right) } {(1-\beta -\delta)}}\left[ \delta _{F} + {\frac{\beta } {1-\beta }}\delta \right] \omega _{i}^{*}\left(1-\tau _{i}^{ex}\right) ^{-1}\hbox {\qquad see\qquad }\left(9 \right) \\ \end{aligned} $$

Steady state reactions \({{{\frac{\partial \omega _{i}^{*}} {\partial \gamma _{i}}}}}\) :

$$ \begin{aligned} {\frac{\partial \omega _{i}^{*}} {\partial \gamma _{i}}} &={\frac{\left(1-\beta \right) \omega _{i}^{*}} {(1-\beta -\delta)}}\Psi _{i}^{-1}{\frac{ \partial \Psi _{i}} {\partial \gamma _{i}}} \\ {\frac{d\Psi _{i}} {d\gamma _{i}}} &=\delta _{G}\gamma _{i}^{\delta _{G}-1} \left({{\frac{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } { \tau _{i}r}}}\right) ^{\delta _{F}+{\frac{\beta } {1-\beta }}\delta } \\ &-\left(\delta _{F}+{\frac{\beta } {1-\beta }}\delta \right) \gamma _{i}^{\delta _{G}} \left({{{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}}\right) ^{\delta _{F}+{\frac{\beta } {1-\beta }} \delta -1} {{\frac{(1-\tau _{i}^{ex})\beta } {\tau _{i}r}}} \\ &=\Psi _{i}\left[ \delta _{G}\gamma _{i}^{-1}-\left(\delta _{F}+{\frac{ \beta } {1-\beta }}\delta \right) \left(1-\gamma _{i}\right) ^{-1}\right] \\ {\frac{\partial \omega _{i}^{*}} {\partial \gamma _{i}}} &={\frac{\left(1-\beta \right) \omega _{i}^{*}} {(1-\beta -\delta)}} \left[ \delta _{G}\gamma _{i}^{-1}-\left(\delta _{F}+{\frac{\beta } {1-\beta }}\delta \right) \left(1-\gamma _{i}\right) ^{-1}\right] \quad {{\text see}}\quad \left(10\right) \\ \end{aligned} $$

1.3 Appendix 3

Optimal level of government activities

$$ \begin{aligned} \underset{\gamma _{i}}{\max \quad }\omega ^{*} &=\Psi _{i}^{{\frac{ \left(1-\beta \right) } {(1-\beta -\delta)}}}\left[ H_{i}^{{\frac{\alpha } { 1-\beta }}}K_{i}^{{\frac{1-\beta -\alpha } {1-\beta }}}\right] ^{{\frac{\delta \left(1-\beta \right) } {(1-\beta -\delta)}}}\quad \Psi _{i}:=\gamma _{i}^{\delta _{G}} \left({{{(1-\tau _{i}^{ex})\left(1-\gamma _{i}\right) \beta } {\tau _{i}r}}}\right) ^{\delta _{F}+{\frac{\beta } {1-\beta }} \delta } \\ {\frac{\partial \omega _{i}^{*}} {\partial \gamma _{i}}} &={\frac{\left(1-\beta \right) \omega _{i}^{*}} {(1-\beta -\delta)}}\Psi _{i}^{-1}{\frac{ \partial \Psi _{i}} {\partial \gamma _{i}}} \\ {\frac{d\Psi _{i}} {d\gamma _{i}}} &=\Psi _{i} \left[ \delta _{G}\gamma _{i}^{-1}-\left(\delta _{F}+{\frac{\beta } {1-\beta }} \delta \right) \left(1-\gamma _{i}\right) ^{-1}\right] =0 \\ \delta _{G} &=\gamma _{i}\left(\delta _{F}+{\frac{\beta } {1-\beta }}\delta \right) \left(1-\gamma _{i}\right) ^{-1} \\ \gamma _{i}^{*}&={\frac{\delta _{G}} {\left(\delta _{F}+{\frac{\beta } { 1-\beta }}\delta +\delta _{G}\right) }} \\ {\frac{\partial \omega _{i}^{*}} {\partial \gamma _{i}}} &={\frac{\omega _{i}^{*}} {1-\delta }}\Psi _{i}^{-1}{\frac{\partial \Psi _{i}} {\partial \gamma _{i}}}\end{aligned} $$

with

$$ {\frac{\partial \Psi _{i}} {\partial \gamma _{i}}} \left\{ \begin{array}{llll} >0 & & \gamma _{i}<\gamma _{i}^{*}\quad & \hbox {underinvestment, undertaxation}\\ =0 & \hbox {for} & \gamma _{i}=\gamma _{i}^{*}\quad & \hbox {growth maximizing tax rate}\\ <0 & & \gamma _{i}>\gamma _{i}^{*}\quad & \hbox {overinvestment, overtaxation}\\ \end{array} \right. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gries, T., Redlin, M. International integration and the determinants of regional development in China. Econ Change Restruct 44, 149–177 (2011). https://doi.org/10.1007/s10644-010-9084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10644-010-9084-6

Keywords

JEL Classification

Navigation