Skip to main content
Log in

Identifying Opportunities for Grade One Children to Acquire Foundational Number Sense: Developing a Framework for Cross Cultural Classroom Analyses

  • Published:
Early Childhood Education Journal Aims and scope Submit manuscript

An Erratum to this article was published on 06 February 2015

Abstract

It is known that an appropriately developed foundational number sense (FONS), or the ability to operate flexibly with number and quantity, is a powerful predictor of young children’s later mathematical achievement. However, until now not only has FONS been definitionally elusive but instruments for identifying opportunities for children to acquire its various components have been missing from the classroom observation tools available. In this paper, drawing on a constant comparison analysis of appropriate literature, we outline the development of an eight dimensional FONS framework. We then show, by applying this framework to three culturally diverse European grade one lessons, one English, one Hungarian and one Swedish, that it is both straightforwardly operationalised and amenable to cross cultural analyses of classroom practice. Some implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Typically, Klara located everything she taught within a narrative or story for the day.

  2. In Hungarian sz is an alphabetic letter pronounced like s in the English word sun.

References

  • Arbaugh, F., Herbel-Eisenmann, B., Ramirez, N., Knuth, E., Kranendonk, H., Reed Quander, J., et al. (2010). Linking research and practice: The NCTM research agenda conference report. Reston, VA: NCTM.

    Google Scholar 

  • Aubrey, C., & Godfrey, R. (2003). The development of children’s early numeracy through key stage 1. British Educational Research Journal, 29(6), 821–840.

    Article  Google Scholar 

  • Aubrey, C., Dahl, S., & Godfrey, R. (2006). Early mathematics development and later achievement: Further evidence. Mathematics Education Research Journal, 18(1), 27–46.

    Article  Google Scholar 

  • Aunio, P., & Niemivirta, M. (2010). Predicting children’s mathematical performance in grade one by early numeracy. Learning and Individual Differences, 20(5), 427–435.

    Article  Google Scholar 

  • Aunio, P., Niemivirta, M., Hautamäki, J., Van Luit, J., Shi, J., & Zhang, M. (2006). Young children’s number sense in China and Finland. Scandinavian Journal of Educational Research, 50(5), 483–502.

    Article  Google Scholar 

  • Aunola, K., Leskinen, E., Lerkkanen, M.-K., & Nurmi, J.-E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology, 96(4), 699–713.

    Article  Google Scholar 

  • Backman, K., & Kyngäs, H. A. (1999). Challenges of the grounded theory approach to a novice researcher. Nursing & Health Sciences, 1(3), 147–153.

    Article  Google Scholar 

  • Berch, D. (2005). Making sense of number sense. Journal of Learning Disabilities, 38(4), 333–339.

    Article  Google Scholar 

  • Booth, J., & Siegler, R. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189–201.

    Article  Google Scholar 

  • Booth, J., & Siegler, R. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.

    Article  Google Scholar 

  • Brod, M., Tesler, L., & Christensen, T. (2009). Qualitative research and content validity: Developing best practices based on science and experience. Quality of Life Research, 18(9), 1263–1278.

    Article  Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.

    Article  Google Scholar 

  • Byrnes, J., & Wasik, B. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity-propensity analysis. Contemporary Educational Psychology, 34(2), 167–183.

    Article  Google Scholar 

  • Casey, B., Kersh, J., & Young, J. (2004). Storytelling sagas: An effective medium for teaching early childhood mathematics. Early Childhood Research Quarterly, 19(1), 167–172.

    Article  Google Scholar 

  • Chard, D., Clarke, B., Baker, S., Otterstedt, J., Braun, D., & Katz, R. (2005). Using measures of number sense to screen for difficulties in mathematics. Assessment for Effective Intervention, 30(2), 3–14.

    Article  Google Scholar 

  • Clarke, B., & Shinn, M. (2004). A preliminary investigation into the identification and development of early mathematics curriculum-based measurement. School Psychology Review, 33(2), 234–248.

    Google Scholar 

  • De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55.

    Article  Google Scholar 

  • Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36.

    Article  Google Scholar 

  • Desoete, A., Stock, P., Schepens, A., Baeyens, D., & Roeyers, H. (2009). Classification, seriation, and counting in grades 1, 2, and 3 as two-year longitudinal predictors for low achieving in numerical facility and arithmetical achievement? Journal of Psychoeducational Assessment, 27(3), 252–264.

    Article  Google Scholar 

  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81.

    Article  Google Scholar 

  • Faulkner, V. (2009). The components of number sense. Teaching Exceptional Children, 41(5), 24–30.

    Google Scholar 

  • Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition, 68(2), B63–B70.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.

    Article  Google Scholar 

  • Gallistel, C., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59–65.

    Article  Google Scholar 

  • Geary, D. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27.

    Article  Google Scholar 

  • Geary, D., Bailey, D., & Hoard, M. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool. Journal of Psychoeducational Assessment, 27(3), 265–279.

    Article  Google Scholar 

  • Gelman, R., & Tucker, M. (1975). Further investigations of the young child’s conception of number. Child Development, 46(1), 167–175.

    Article  Google Scholar 

  • Gersten, R., & Chard, D. (1999). Number sense: Rethinking arithmetic instruction for students with mathematical disabilities. The Journal of Special Education, 33(1), 18–28.

    Article  Google Scholar 

  • Gersten, R., Jordan, N., & Flojo, J. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38(4), 293–304.

    Article  Google Scholar 

  • Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine.

    Google Scholar 

  • Gracia-Bafalluy, M., & Noël, M.-P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44(4), 368–375.

    Article  Google Scholar 

  • Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early Childhood Research Quarterly, 19(1), 173–180.

    Article  Google Scholar 

  • Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 24–49). Cambridge, MA: MIT Press.

    Google Scholar 

  • Holloway, I., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.

    Article  Google Scholar 

  • Howell, S., & Kemp, C. (2005). Defining early number sense: A participatory Australian study. Educational Psychology, 25(5), 555–571.

    Article  Google Scholar 

  • Howell, S., & Kemp, C. (2006). An international perspective of early number sense: Identifying components predictive of difficulties in early mathematics achievement. Australian Journal of Learning Disabilities, 11(4), 197–207.

    Article  Google Scholar 

  • Hunting, R. (2003). Part-whole number knowledge in preschool children. The Journal of Mathematical Behavior, 22(3), 217–235.

    Article  Google Scholar 

  • Ivrendi, A. (2011). Influence of self-regulation on the development of children’s number sense. Early Childhood Education Journal, 39(4), 239–247.

    Article  Google Scholar 

  • Jordan, N., & Levine, S. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60–68.

    Article  Google Scholar 

  • Jordan, N., Huttenlocher, J., & Levine, S. (1992). Differential calculation abilities in young children from middle- and low-income families. Developmental Psychology, 28(4), 644–653.

    Article  Google Scholar 

  • Jordan, N., Kaplan, D., Nabors Oláh, L., & Locuniak, M. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153–175.

    Article  Google Scholar 

  • Jordan, N., Kaplan, D., Locuniak, M., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 36–46.

    Article  Google Scholar 

  • Jordan, N., Kaplan, D., Ramineni, C., & Locuniak, M. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867.

    Article  Google Scholar 

  • Koontz, K., & Berch, D. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited arithmetic learning disabled children. Mathematical Cognition, 2(1), 1–23.

    Article  Google Scholar 

  • Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526.

    Article  Google Scholar 

  • Kroesbergen, E., Van Luit, J., Van Lieshout, E., Van Loosbroek, E., & Van de Rijt, B. (2009). Individual differences in early numeracy. Journal of Psychoeducational Assessment, 27(3), 226–236.

    Article  Google Scholar 

  • LeCompte, M., & Goetz Preissle, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52(1), 31–60.

    Article  Google Scholar 

  • LeFevre, J.-A., Smith-Chant, B., Fast, L., Skwarchuk, S.-L., Sargla, E., Arnup, J., et al. (2006). What counts as knowing? The development of conceptual and procedural knowledge of counting from kindergarten through Grade 2. Journal of Experimental Child Psychology, 93(4), 285–303.

    Article  Google Scholar 

  • Lembke, E., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten and first-grade students. Learning Disabilities Research & Practice, 24(1), 12–20.

    Article  Google Scholar 

  • Levine, S., Jordan, N., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53(1), 72–103.

    Article  Google Scholar 

  • Libertus, M., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–1300.

    Article  Google Scholar 

  • Lipton, J., & Spelke, E. (2005). Preschool children’s mapping of number words to nonsymbolic numerosities. Child Development, 76(5), 978–988.

    Article  Google Scholar 

  • Lyons, I., & Beilock, S. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256–261.

    Article  Google Scholar 

  • Malofeeva, E., Day, J., Saco, X., Young, L., & Ciancio, D. (2004). Construction and evaluation of a number sense test with Head Start children. Journal of Educational Psychology, 96(4), 648–659.

    Article  Google Scholar 

  • Mazzocco, M., & Thompson, R. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research and Practice, 20(3), 142–155.

    Article  Google Scholar 

  • Mazzocco, M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224–1237.

    Article  Google Scholar 

  • McIntosh, A., Reys, B., & Reys, R. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3), 2–8.

    Google Scholar 

  • Melhuish, E., Sylva, K., Sammons, P., Siraj-Blatchford, I., Taggart, B., Phan, M., et al. (2008). Preschool influences on mathematics achievement. Science, 321, 1161–1162.

    Article  Google Scholar 

  • Mundy, E., & Gilmore, C. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502.

    Article  Google Scholar 

  • Nan, Y., Knösche, T., & Luo, Y.-J. (2006). Counting in everyday life: Discrimination and enumeration. Neuropsychologica, 44(7), 1103–1113.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.

    Google Scholar 

  • Noël, M.-P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child Neuropsychology, 11(5), 413–430.

    Article  Google Scholar 

  • Passolunghi, M., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22(2), 165–184.

    Article  Google Scholar 

  • Penner, A., & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37(1), 239–253.

    Article  Google Scholar 

  • Purpura, D., & Lonigan, C. (2013). Informal numeracy skills: The structure and relations among numbering, relations, and arithmetic operations in preschool. American Educational Research Journal, 50(1), 178–209.

    Article  Google Scholar 

  • Radwan, A. (2005). The effectiveness of explicit attention to form in language learning. System, 33(1), 69–87.

    Article  Google Scholar 

  • Reys, B. (1994). Promoting number sense in the middle grades. Mathematics Teaching in the Middle School, 1(2), 114–120.

    Google Scholar 

  • Richardson, K. (2004). Making sense. In D. Clements & J. Sarama (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics (pp. 321–324). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Robinson, C., Menchetti, B., & Torgesen, J. (2002). Toward a two-factor theory of one type of mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81–89.

    Article  Google Scholar 

  • Siegler, R., & Booth, J. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444.

    Article  Google Scholar 

  • Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99–120.

    Article  Google Scholar 

  • Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: Evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43(3), 250–268.

    Article  Google Scholar 

  • Tesch, R. (1990). Qualitative research: Analysis types and software tools. New York, NY: Falmer.

    Google Scholar 

  • Thomas, N., Mulligan, J., & Goldin, G. (2002). Children’s representation and structural development of the counting sequence 1–100. The Journal of Mathematical Behavior, 21(1), 117–133.

    Article  Google Scholar 

  • Van de Rijt, B., Van Luit, J., & Pennings, A. (1999). The construction of the Utrecht early mathematical competence scale. Educational and Psychological Measurement, 59(2), 289–309.

    Article  Google Scholar 

  • Van Luit, J., & Schopman, E. (2000). Improving early numeracy of young children with special educational needs. Remedial and Special Education, 21(1), 27–40.

    Article  Google Scholar 

  • Van Nes, F., & De Lange, J. (2007). Mathematics education and neurosciences: Relating spatial structures to the development of spatial sense and number sense. The Montana Mathematics Enthusiast, 2(4), 210–229.

    Google Scholar 

  • Van Nes, F., & Van Eerde, D. (2010). Spatial structuring and the development of number sense: A case study of young children working with blocks. The Journal of Mathematical Behavior, 29(2), 145–159.

    Google Scholar 

  • Wasserman, J., Clair, J., & Wilson, K. (2009). Problematics of grounded theory: Innovations for developing an increasingly rigorous qualitative method. Qualitative Research, 9(3), 355–381.

    Article  Google Scholar 

  • Yang, D.-C., & Li, M.-N. (2008). An investigation of 3rd-grade Taiwanese students’ performance in number sense. Educational Studies, 34(5), 443–455.

    Article  Google Scholar 

  • Zur, O., & Gelman, R. (2004). Young children can add and subtract by predicting and checking. Early Childhood Research Quarterly, 19(1), 121–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Andrews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, P., Sayers, J. Identifying Opportunities for Grade One Children to Acquire Foundational Number Sense: Developing a Framework for Cross Cultural Classroom Analyses. Early Childhood Educ J 43, 257–267 (2015). https://doi.org/10.1007/s10643-014-0653-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10643-014-0653-6

Keywords

Navigation