Skip to main content

Advertisement

Log in

Population structure and conservation genetics of anadromous white-spotted char (Salvelinus leucomaenis) on Hokkaido Island: Detection of isolation-by-distance

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

To increase the quantity of anadromous and freshwater fish resources and conserve natural populations effectively, it is important to identify conservation units and population structures, as well as to ensure sufficient genetic variability within populations. Here, we used 12 microsatellite loci to evaluate the population structure, effective population size, and bottlenecks in seven anadromous white-spotted char (Salvelinus leucomaenis leucomaenis) populations inhabiting the rivers of Hokkaido Island, Japan. Low migration rates were detected among populations, with significant genetic differentiation being observed, suggesting high homing rates. In addition, isolation-by-distance was observed among the evaluated populations, indicating that the populations in this region are at equilibrium between migration and drift. We identified a genetic bottleneck footprint in all seven of the analyzed white-spotted char populations by using the M ratio test. In contrast, heterozygote excess tests showed that all seven populations showed no signatures of population decline. This discrepancy may have been caused by differences in statistical power among tests. Alternatively, this discrepancy may be consistent with a strong founder effect during the late Pleistocene, followed by a subsequent low migration rate among populations. In conclusion, future conservation genetic management strategies should ensure that anadromous white-spotted char populations successfully exhibit homing behavior in the rivers of Hokkaido Island, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alo D, Turner TF (2005) Effects of habitat fragmentation on effective population size in the endangered Rio Grande silvery minnow. Conserv Biol 19:1138–1148

    Article  Google Scholar 

  • Angers B, Bernatchez L, Angers A, Desgroseillers L (1995) Specific microsatellite loci for brook charr (Salvelinus fontinalis Mitchill) reveals strong population subdivision on microgeographic scale. J Fish Biol 47:177–185

    Article  CAS  Google Scholar 

  • Antunes A, Faria R, Johnson WE, Guyomard R, Alexandrino P (2006) Life on the edge: the long-term persistence and contrasting spatial genetic structure of distinct brown trout life histories at their ecological limits. J Hered 97:193–205

    Article  PubMed  Google Scholar 

  • Armstrong RH, Morrow JE (1980) The Dolly Varden charr. In: Balon EK (ed) Charrs: salmonid fishes of the genus Salvelinus. Dr W Junk b v, Publishers, The Hague, pp. 99–140

    Google Scholar 

  • Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Article  Google Scholar 

  • Ayala JF (1965) Evolution of fitness in experimental populations of Drosophila Serrata. Science 150:903–905

    Article  CAS  PubMed  Google Scholar 

  • Bams RA (1976) Survival and propensity for homing as affected by presence or absence of locally adapted paternal genes in two transplanted populations of pink salmon (Oncorhynchus gorbuscha). J Fish Res Board Can 33:2716–2725

    Article  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatchez L, Dempson JB, Martin S (1998) Microsatellite gene diversity analysis in anadromous Arctic charr, Salvelinus alpinus, from Labrador, Canada. Can J Fish Aquat Sci 55:1264–1272

    Article  Google Scholar 

  • Carvalho GR (1993) Evolutionary aspects of fish distribution: genetic variability and adaptation. J Fish Biol 43(Suppl. A):53–73

    Article  Google Scholar 

  • Castric V, Bernatchez L (2003) The rise and fall of isolation by distance in anadromous brook charr (Salvelinus fontinalis Mitchill). Genetics 165:983–996

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Ferguson A (2004) The importance of identifying conservation units: Brown trout and pollan biodiversity in Ireland. P Roy Irish Acad 104B:33–41

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soule M, Wilcox B (eds) Conservation Biology: an Evolutionary–Ecological Perspective. Sinauer, Sunderland, pp. 135–149

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (vers.1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 5 May 2015

  • Groombridge B (1992) Centres of species diversity. In: Global biodiversity, Status of the Earth’s living resources, London, United Kingdom

  • Habel JC, Husemann M, Schmitt T, Dapporto L, Vandewoestijne S (2012) A forest butterfly in Sahara desert oases: isolation does not matter. J Hered 104:234–247

    Article  PubMed  Google Scholar 

  • Hasselman DJ, Limburg KE (2012) Alosine restoration in the twenty-first century: challenging the status quo. Marine and Coastal Fisheries 4:174–187

    Article  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol Ecol 11:197–214

    Article  CAS  PubMed  Google Scholar 

  • Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The Evolution of Philopatry and Dispersal: Homing vs. Straying in Salmonids. In: Hendry AP, Stearns SC (eds) Evolution Illuminated: Salmon and Their Relatives. Oxford University Press, New York, pp. 52–91

    Google Scholar 

  • Hoffman EA, Blouin MS (2004) Historical data refute recent range contraction as cause of low genetic diversity in isolated frog populations. Mol Ecol 13:71–276

    Article  Google Scholar 

  • Hosoya K (1993) Salmonidae. In: Nakabo T (ed) Fishes of Japan. Tokai University Press, Tokyo, pp. 256–261 (in Japanese)

  • Inamura A, Nakamura M (1962) Distribution and differentiation of Japanese char. Rep Res Inst Nat Resources 58-59:64–80 (in Japanese)

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13 http://ibdws.sdsu.edu/. Accessed 5 May 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson L (1980) The Arctic charr, Salvelinus alpinus. In: Balon EK (ed) Charrs – salmonid fishes of the genus Salvelinus. Dr W Junk b v, Publishers, The Hague, pp. 5–98

    Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change in allele frequencies. Genetics 143:1369–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeriyama M, Ueda H (1998) Life history strategy and migration pattern of juvenile sockeye (Oncorhynchus nerka) and chum salmon (O. keta) in Japan: a review. N Pac Anad Fish Comm Bull 1:163–171

    Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kikko T, Kai Y, Nakayama K (2009) Relationships among tributary length, census population size and genetic variability of white-spotted charr (Salvelinus leucomaenis) in the Lake Biwa water system. Ichthyol Res 56:100–104

    Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  CAS  PubMed  Google Scholar 

  • Kishi D, Takayama H, Kato H, Fukushlma M (2003) Riverine fish fauna in the Hidaka region, Hokkaido, Res Bull Hokkaido Univ For 60: 1-18 (in Japanese)

  • Kitanishi S, Yamamoto T, Koizumi I, Dunham JB, Higashi S (2012) Fine scale relationships between sex, life history, and dispersal of masu salmon. Ecol Evol 2:920–929

  • Koizumi I, Yamamoto S, Maekawa K (2006) Decomposed pairwise regression analysis of genetic and geographic distances reveals a metapopulation structure of stream-dwelling Dolly Varden charr. Mol Ecol 15:3175–3189

    Article  CAS  PubMed  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Article  Google Scholar 

  • Laikre L, Jorde PE, Ryman N (1998) Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population. Evolution 52:910–915

    Article  Google Scholar 

  • Leary RF, Allendorf FW, Sage GK (1995) Hybridization and introgression between introduced and native fish. Am Fish Soc Symp 15:91–101

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Lowe WH, Allenndorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills LS, Schwartz MK, Tallmon DA, Lair KP (2003) Measuring and interpreting connectivity for mammals in coniferous forests. In: Zabel CJ, Anthony RG (eds) Mammal community dynamics: management and conservation in the coniferous forests of western North America. Cambridge University Press, Cambridge, pp. 587–613

    Chapter  Google Scholar 

  • Mitton JB, Grant MC (1984) Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annu Rev Ecol Syst 15:479–499

    Article  Google Scholar 

  • Moore JS, Harris LN, Tallman RF, Taylor EB (2013) The interplay between dispersal and gene flow in anadromous Arctic char (Salvelinus alpinus): implications for potential for local adaptation. Can J Fish Aquat Sci 70:1327–1338

    Article  Google Scholar 

  • Morita K, Yamamoto S (2002) Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conserv Biol 16:1318–1323

    Article  Google Scholar 

  • Morita K, Morita SH, Nagasawa T, Kuroki M (2013) Migratory patterns of anadromous white-spotted charr Salvelinus leucomaenis in eastern Hokkaido, Japan: the solution to a mystery? J Ichthyol 53:809–819

    Article  Google Scholar 

  • Moritz C (1994) Difining ‘Evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Fujio Y (1995) Genetic differentiation among local populations of Japanese char Salvelinus leucomaenis. Fish Sci 61:11–15

    CAS  Google Scholar 

  • Nakamura T (1999) Comparison of physical characteristics of spawning redds between the fluvial Japanese charr Salvelinus leucomaenis and the masu salmon Oncorhynchus masou masou in headwaters of the Kinu River, central Japan. Nippon Suisan Gakkaishi 65:427–433 (in Japanese with English abstract)

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nordeng H (1971) Is the local orientation of anadromous fishes determined by pheromones? Nature 233:411–413

    Article  CAS  PubMed  Google Scholar 

  • Nordeng H (2009) Char ecology. Natal homing in sympatric populations of anadromous Arctic char Salvelinus alpinus (L.): roles of pheromone recognition. Ecol Freshw Fish 18:41–51

    Article  Google Scholar 

  • Okazaki T (1986) Genetic variation and population structure in masu salmon Oncorhynchus masou of Japan. Bull Jpn Soc Sci Fish 52:1365–1376

    Article  Google Scholar 

  • Packer C, Pusey AE, Rowley H, Gilbert DA, Martenson J, O’Brien EJ (1991) Case study of a population bottleneck: Lions of the Ngorongoro Crater. Conserv Biol 5:219–230

    Article  Google Scholar 

  • Page RDM (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2010) A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland. Can J Fish Aquat Sci 67:225–242

    Article  Google Scholar 

  • Parra D, García D, Méndez S, Cañón J, Dunner S (2010) High Mutation Rates in Canine tetranucleotide Microsatellites: Too Much Risk for Genetic Compatibility Purposes? Open Forensic Sci J 3:9–13

    Article  CAS  Google Scholar 

  • Pilgrim BL, Perry RC, Keefe DG, Perry EA, Marshall HD (2012) Microsatellite variation and genetic structure of brook trout (Salvelinus fontinalis) populations in Labrador and neighbouring Atlantic Canada: evidence for limited ongoing gene flow and dual routes of post-Wisconsinan colonization. Ecol Evol 2:885–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: A computer program for detecting recent detecting recent reductions in the effective populations size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Quattro JM, Vrijenhoek RC (1989) Fitness differences among remnant populations of the endangered Sonoran topminnow. Science 241:976–979

    Article  Google Scholar 

  • Quinn TP (1993) A review of homing and straying of wild and hatchery-produced salmon. Fish Res 18:29–44

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rieman BE, Allendorf FW (2001) Effective population size and genetic conservation criteria for bull trout. North Am J Fish Manage 21:756–764

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction of phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Mol Ecol 12:2571–2583

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographical structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Stabell OB (1984) Homing and olfaction in salmonids — a critical review with special reference to the Atlantic salmon. Biol Rev 59:333–388

    Article  CAS  Google Scholar 

  • Swatdipong A, Primmer CR, Vasemägi A (2010) Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conserv Genet 11:279–292

    Article  Google Scholar 

  • Takehata Y, Kitagawa T (2010) Medaka (Oryzias latipes): genetic introgression resultingfrom artificial transplantation. Japan J Ichthyol 57:76–79 (in Japanese)

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  CAS  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont M (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Notes 8:299–301

    Article  Google Scholar 

  • Taniguchi N (2003) Genetic factor in broodstock management for seed production. Rev Fish Biol Fish 13:177–185

    Article  Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207

    Article  Google Scholar 

  • Ueda H (2012) Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. J Fish Biol 81:543–558

    Article  CAS  PubMed  Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from mirosatellite loci. Conserv Genet 6:551–562

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wilson KA, Magnuson JJ, Lodge DM, Hill AM, Kratz TK, Perry WL, Willis TV (2004) Dispersal in a stream-dwelling salmonid: Inferences from tagging and microsatellite studies. Conserv Genet 5:25–37

    Article  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Morita K, Kitano S, Watanabe K, Koizumi I, Maekawa K, Takamura K (2004a) Phylogeography of white-spotted charr (Salvelinus leucomaenis) inferred from mitochondrial DNA sequences. Zool Sci 21:229–240

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morita K, Koizumi I, Maekawa K (2004b) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: Spatial-temporal changes in gene frequencies. Conserv Genet 5:529–538

    Article  CAS  Google Scholar 

  • Yamaguchi K, Nakajima M, Taniguchi N (2008) Development of microsatellite markers in Japanese char Salvelinus leucomaenis and their applicability to closely related species. Fish Genet Breed Sci 38:123–130

    Google Scholar 

  • Yamaguchi K, Nakajima M, Taniguchi N (2010) Loss of genetic variation and increased population differentiation in geographically peripheral populations of Japanese char Salvelinus leucomaenis. Aquaculture 308(suppl.1):S20–S27

    Article  Google Scholar 

  • Yamaguchi K, Saito M, Nakajima M (2015a) Identification and characterization of 12 tetranucleotide microsatellite markers in the white-spotted char Salvelinus leucomaenis. Conserv Genet Resour 7:497–499

    Article  Google Scholar 

  • Yamaguchi K, Nakajima M, Taniguchi N (2015b) Mitochondrial genetic evidence for recent population expansion of the white-spotted char (Salvelinus leucomaenis) without geographic patterns from Northern Japan to Central Honshu. Fish Genet Breed Sci 44:5–16

Download references

Acknowledgments

We thank Daisei Ando (Hokkaido Research Organization, Fisheries Research Department Salmon and Freshwater Fisheries Research Institute) and Hiromasa Yamaguchi (a fishing guide in Hokkaido) for assistance with sampling, and Mariko Miyazaki for technical assistance during our study. We also thank Daisuke Kishi (Gifu Prefecture Research Institute for Fisheries and Aquatic Environments) for his suggestion to collect data from the Mitsuishi River. In addition, we thank the anonymous reviewers for these helpful comments. This study was partly supported by JSPS Grants-in-Aid for Scientific Research, grant no.25252035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohtaroh Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, K., Nakajima, M. & Taniguchi, N. Population structure and conservation genetics of anadromous white-spotted char (Salvelinus leucomaenis) on Hokkaido Island: Detection of isolation-by-distance. Environ Biol Fish 99, 513–525 (2016). https://doi.org/10.1007/s10641-016-0494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0494-9

Keywords

Navigation