Skip to main content

Advertisement

Log in

Microhabitat segregation and fine ecomorphological dissimilarity between two closely phylogenetically related grazer fishes in an Atlantic Forest stream, Brazil

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Habitat segregation is considered the most prevalent resource-partitioning mechanism for stream fishes and the species morphology can be a strong predictor of their spatial distribution. However, most studies addressing morphology-habitat relationships have defined the space in physiognomically homogeneous units (i.e., mesohabitat), probably not detecting segregation among several closely related species. Here we investigated the ecomorphology and the use of habitat in a fine spatial scale (i.e., microhabitat) by two closely phylogenetically related grazer fishes (the loricariids Parotocinclus maculicauda and Hisonotus notatus), syntopic in an Atlantic Forest stream. We conducted standardized underwater observations in two 50 m long stream sections differing in canopy condition, totaling 273 individual microhabitat records. We clearly detected microhabitat segregation between the species. In both sample sites, H. notatus remained near the stream banks and closer to shelters, while P. maculicauda predominantly occurred in more hydrodynamic microhabitats, facing higher focal current velocities and water turbulence. Differences in focal elevation and water depth (i.e., vertical segregation) were exclusively detected in the deforested site. The spatial segregation was congruent with slight interspecific morphological differences, being in accordance with hypotheses about form-function relationships previously reported for fishes. Given that the diel activity and diet of these grazer species were strongly overlapping, we believe that the observed microhabitat segregation favors resource partitioning between P. maculicauda and H. notatus, facilitating their coexistence in high abundances in the studied system. This study illustrates how the assessment of fine-tuned ecological processes can provide subsidy to management strategies aiming the conservation of tropical stream biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD, Erickson DL, Fay F (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Article  Google Scholar 

  • Aranha JMR (1993) Método para análise quantitativa de algas e outros itens microscópicos de alimentação de peixes. Acta Biol Par 22:71–76

    Google Scholar 

  • Bojsen BH, Barriga R (2002) Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshw Biol 47:2246–2260

    Article  Google Scholar 

  • Brito MFG (2007) Atividade reprodutiva dos peixes do rio Macaé (RJ) em função do gradiente longitudinal. Dissertation, Universidade Federal do Rio de Janeiro

  • Brooks DR, McLennan DA (1993) Historical ecology: examining phylogenetic components of community evolution. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 267–280

    Google Scholar 

  • Buck S, Sazima I (1995) An assemblage of mailed catfishes (Loricariidae) in southeastern Brazil: distribution activity and feeding. Ichthyol Explor Freshw 6:325–332

    Google Scholar 

  • Burcham J (1988) Fish communities and environmental characteristics of two lowland streams in Costa Rica. Rev Biol Trop 36:273–285

    Google Scholar 

  • Carvalho LN, Zuanon J, Sazima I (2009) Natural History of Amazon Fishes. In: Del Claro K, Oliveira PS, Rico-Gray V, Ramirez A, Barbosa AAA, Bonet A (eds) Tropical biology and conservation management: case studies. Eolss Publishers Co. Ltd., Oxford, pp 113–144

    Google Scholar 

  • Casatti L, Castro RMC (2006) Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyol 4:203–214

    Article  Google Scholar 

  • Casatti L, Rocha FC, Pereira DC (2005) Habitat use by two species of Hypostomus (Pisces, Loricariidae) in southeastern brazilian streams. Biota Neotrop 5:1–9

    Google Scholar 

  • Douglas ME, Matthews WJ (1992) Does morphology predicts ecology? Hypothesis testing within a freshwater fish assemblage. Oikos 65:213–224

    Article  Google Scholar 

  • Erös T, Botta-Dukát Z, Grossman GD (2003) Assemblage structure and habitat use of fishes in a Central European submontane stream: a patch-based approach. Ecol Freshw Fish 12:141–150

    Article  Google Scholar 

  • Garavello JC, Britski HA (2003) Parotocinclus planicauda, a new species of the subfamily Hypoptopomatinae from southeastern Brazil (Ostariophysi: Loricariidae). Braz J Biol 63(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Gatz AJ (1979a) Community organization in fishes as indicated by morphological features. Ecology 60:711–718

    Article  Google Scholar 

  • Gatz AJ (1979b) Ecological morphology of freshwater stream fishes. Tulane Stud Zool Bot 21:91–124

    Google Scholar 

  • Gauger MFW, Buckup PA (2005) Two new species of Hypoptopomatinae from the rio Paraíba do Sul basin, with comments on the monophyly of Paratocinclus and the Otothyrini (Siluriformes: Loricariidae). Neotrop Ichthyol 3:509–518

    Article  Google Scholar 

  • Granado-Lorencio C, Garcia-Novo F (1981) Cambios ictiológicos durante las primeiras etapas de la Sucesión en embalse de Arrocampo (Cuenca del rio Tajo, Cáceres). Bol Inst Esp Oceanogr 6:224–243

    Google Scholar 

  • Gray ES, Stauffer JR (1999) Comparative microhabitat use of ecologically similar benthic fishes. Environ Biol Fish 56:443–453

    Article  Google Scholar 

  • Grossman GD, Freeman MC (1987) Microhabitat use in a stream fish assemblage. J Zool 212:151–176

    Article  Google Scholar 

  • Grossman GD, Sostoa A, Freeman MC, Lobón-Cerviá J (1987) Microhabitat use in a Mediterranean riverine fish assemblage: fishes of the lower Matarraña. Oecologia 73:490–500

    Article  Google Scholar 

  • Grossman GD, Ratjczak RE, Crawford M, Freeman MC (1998) Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecol Monogr 68:396–420

    Article  Google Scholar 

  • Hardin G (1960) Competitive exclusion principle. Science 131:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Herder F, Freyhof J (2006) Resource partitioning in a tropical stream fish assemblage. J Fish Biol 69:571–589

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Springs Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Iglesias-Rios R (2004) A teoria do nicho ecológico: benefícios e malefícios. In: Coelho AS, Loyola RD, Souza MBG (eds) Ecologia Teórica: desafios para o aperfeiçoamento da Ecologia no Brasil. O Lutador, Belo Horizonte, pp 27–41

    Google Scholar 

  • Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170

    Google Scholar 

  • Kano Y, Miyazaki Y, Tomiyama Y, Mitsuyuki C, Nishida S, Rashid ZA (2013) Linking mesohabitat selection and ecological traits of a fish assemblage in a small tropical stream (Tinggi River, Pahang Basin) of the Malay Peninsula. Zool Sci 30:178–184

    Article  PubMed  Google Scholar 

  • Keenleyside MHA (1979) Diversity and adaptation in fish behaviour. Springer, Berlin

    Book  Google Scholar 

  • Krebs CJ (1999) Ecological Methodology, 2nd edn. Benjamin Cummings, California

    Google Scholar 

  • Langerhans RB, Layman CA, Langerhans AK, Dewitt TJ (2003) Habitat-associated morphological divergence in two Neotropical fish species. Biol J Linn Soc 80:689–698

    Article  Google Scholar 

  • Leal CG, Junqueira NT, Pompeu PS (2010) Morphology and habitat use by fishes of the Rio das Velhas basin in southeastern Brazil. Environ Biol Fish 90:143–157

    Article  Google Scholar 

  • Leitão RP, Caramaschi EP, Zuanon J (2007) Following food clouds: feeding association between a minute loricariid and a characidiin species in an Atlantic Forest stream, Southeastern Brazil. Neotrop Ichthyol 5:307–310

    Google Scholar 

  • MacArthur R, Levins R (1967) Limiting similarity convergence and divergence of coexisting species. Am Nat 101:377–387

    Article  Google Scholar 

  • Matthews WJ (1985) Critical current speeds and microhabitats of the benthic fishes Percina roanoka and Etheostoma flabellare. Environ Biol Fish 12:303–308

    Article  Google Scholar 

  • Mitchell SC (2005) How useful is the concept of habitat? A critique. Oikos 110(3):634–638

    Article  Google Scholar 

  • Peres-Neto PR (2004) Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140:352–360

    Article  PubMed  Google Scholar 

  • Power ME (1984a) Depth distributions of armored catfish: predator-induced resource avoidance? Ecology 65:523–528

    Article  Google Scholar 

  • Power ME (1984b) Habitat quality and the distribution of algae-grazing catfish in a Panamanian stream. J Anim Ecol 53:357–374

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/

  • Reist JD (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool 230:513–528

    Google Scholar 

  • Rezende CF, Moraes M, Manna LR, Leitão RP, Caramaschi EP, Mazzoni R (2010) Mesohabitat indicator species in a coastal stream of the Atlantic rainforest, Rio de Janeiro-Brazil. Rev Biol Trop 58:1479–1487

    PubMed  Google Scholar 

  • Rincón PA (1999) Microhabitat use by fishes in small streams: methods and perspectives. Oecologia Aust 6:23–90

    Article  Google Scholar 

  • Romero RM, Casatti L (2012) Identification of key microhabitats for fish assemblages in tropical Brazilian savanna streams. Int Rev Hydrobiol 97:526–541

    Article  Google Scholar 

  • Rosenfeld J (2003) Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Trans Am Fish Soc 132:953–968

    Article  Google Scholar 

  • Roth NE, Allan JD, Erickson DE (1996) Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landsc Ecol 11:141–156

    Article  Google Scholar 

  • Sabino J, Zuanon J (1998) A stream fish assemblage in Central Amazonia: distribution, activity patterns and feeding behavior. Ichthyol Explor Freshw 8:201–210

    Google Scholar 

  • Santos JM, Godinho FN, Ferreira MT (2004) Microhabitat use by Iberian nase Chondrostoma polylepis and Iberian chub Squalius carolitertii in three small streams, north-west Portugal. Ecol Freshw Fish 13:223–230

    Article  Google Scholar 

  • Schaefer SA (2003) Subfamily Hypoptopomatinae. In: Reis RE, Kullander SO, Ferraris CJ (eds) Check list of the freshwater fishes of South and Central America. Edipucrs, Porto Alegre, pp 321–329

    Google Scholar 

  • Siegel S (1975) Estatística não-paramétrica para ciências do comportamento. McGraw-Hilll, São Paulo

    Google Scholar 

  • Sutherland AB, Mayer JL, Gardiner EP (2002) Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshw Biol 47:1791–1805

    Article  Google Scholar 

  • Taniguchi Y, Nakano S (2000) Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81:2027–2039

    Article  Google Scholar 

  • Wallace RK (1981) An assessment of diet-overlap indexes. Trans Am Fish Soc 110:2–76

    Article  Google Scholar 

  • Watson DJ, Balon EK (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J Fish Biol 25:371–384

    Article  Google Scholar 

  • Webb PW, Smith GR (1980) Function of the caudal fin in early fishes. Copeia 3:559–562

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  • Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365

    Article  Google Scholar 

  • Winston MR (1995) Co-occurrence of morphologically similar species of stream fishes. Am Nat 145:527–545

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Lobón-Cerviá and D. Lin for suggestions in the microhabitat sampling design and P. Peres-Neto, A. Petry, P. De Marco, and M. Albrecht in the data analysis. We are grateful to the Laboratório de Ecologia de Peixes/UFRJ fieldwork staff, especially F. Caluca, P. Macedo-Soares, M. Brito, H. Lazzarotto, J. Rego, C. Brazil, M. Cardoso, and A. Pacheco. D. Almeida assisted us with the morphological measurements, and C. Rezende revised initial versions of the manuscript. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis – IBAMA for collect permit (#004/2004). EPC thanks for Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (#309506/2003-4). This study is part of the MSc. dissertation (PPGE-UFRJ) of RPL and was financially supported by PROCAD (#1409/2007) and CNPq (#1327822004-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Pereira Leitão.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitão, R.P., Sánchez-Botero, J.I., Kasper, D. et al. Microhabitat segregation and fine ecomorphological dissimilarity between two closely phylogenetically related grazer fishes in an Atlantic Forest stream, Brazil. Environ Biol Fish 98, 2009–2019 (2015). https://doi.org/10.1007/s10641-015-0423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-015-0423-3

Keywords

Navigation