Skip to main content

Advertisement

Log in

Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

This paper examines alternative hypotheses of beta convergence for different measures of energy efficiency. We collect a novel set of prefecture-level data that substantially extend the breadth of the datasets ever used in this literature. GMM estimators are then used to empirically test the national and club convergence of energy efficiency among these prefectures. We find strong evidence for prefecture-level national and club convergence in energy efficiency. In particular, the listed key environmental protection (KEP) prefectures, prefectures in central and western regions and prefectures not listed as resource-based (RB) converge faster than the non-KEP prefectures, prefectures in eastern region and RB prefectures. Sensitivity analyses suggest that these results are robust to alternative measures of energy efficiency and GMM specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. An increasing number of recent studies employ the log-t test developed by Phillips and Sul (2007) to identify club convergence (Yu et al. 2015; Zhang and Broadstock 2016). However, Monte Carlo experiments have shown that there is substantial distortion in the log-t test and downward bias in the estimated speed of convergence when T is small (Phillips and Sul 2007). As T is small in our case (T \(=\) 11: 2003–2013), the log-t test is not a viable option.

  2. Using annual data allows one to examine short-run convergence dynamics. An interesting comparison is to break the data into short periods and use period means and rerun the models to show long-run convergence dynamics. However, given that time span in our data is relatively short; we focus on short-run dynamics using annual data.

  3. For official interpretation of statistical standard for energy intensity by the Chinese Statistical Bureau (in Chinese), please see: http://www.stats.gov.cn/tjzs/cjwtjd/201311/t20131105_455940.html.

  4. The list of 191 cities is available from the authors upon request.

References

  • Aldy JE (2006) Per capita carbon dioxide emissions: convergence or divergence? Environ Resour Econ 33(4):533–555

    Article  Google Scholar 

  • Aldy JE (2007) Divergence in state-level per capita carbon dioxide emissions. Land Econ 83(3):353–369

    Article  Google Scholar 

  • Andersen P, Petersen NC (1993) A procedure for ranking efficient units in data envelopment analysis. Manag Sci 39:1261–1264

    Article  Google Scholar 

  • Apergis N, Christou C (2015) Energy productivity convergence: new evidence from club converging. Appl Econ Lett 23(2):142–145

    Article  Google Scholar 

  • Arellano M, Bover O (1995) Another look at the instrumental variables estimation of error components models. J Econom 68(1):29–51

    Article  Google Scholar 

  • Asmild M, Zhu MY (2015) Controlling for the use of extreme weights in bank efficiency assessments during the financial crisis. Eur J Oper Res 251(3):999–1015

  • Barassi MR, Cole MA, Elliott RJR (2011) The stochastic convergence of \(\text{ CO }_2\) emissions: a long memory approach. Environ Resour Econ 49(3):367–385

    Article  Google Scholar 

  • Battese GE, Rao DSP, O’Donnell CJ (2004) A metafrontier production function for the estimation of technical efficiencies and technology gaps for firms operating under different technologies. J Prod Anal 21:91–103

    Article  Google Scholar 

  • Bian Y, Yang F (2010) Resource and environment efficiency analysis of provinces in China: a DEA approach based on Shannon’s entropy. Energy Policy 38(4):1909–1917

    Article  Google Scholar 

  • Blundell R, Bond S (1998) Initial conditions and moment restrictions in dynamic panel data models. J Econom 87(1):115–143

    Article  Google Scholar 

  • Boyle GE, McCarthy TG (1997) A simple measure of \(\upbeta \)-convergence. Oxford Bull Econ Stat 59(2):257–264

    Article  Google Scholar 

  • Bulte E, List JA, Strazicich MC (2007) Regulatory federalism and the distribution of air pollutant emissions. J Reg Sci 47(1):155–178

    Article  Google Scholar 

  • Camarero M, Castillo J, Picazo-Tadeo AJ, Tamarit C (2013a) Eco-efficiency and convergence in OECD countries. Environ Resour Econ 55(1):87–106

    Article  Google Scholar 

  • Camarero M, Picazo-Tadeo AJ, Tamarit C (2013b) Are the determinants of CO\(_2\) emissions converging among OECD countries? Econ Lett 118(1):159–162

    Article  Google Scholar 

  • Camarero M, Castillo-Giménez J, Picazo-Tadeo AJ, Tamarit C (2014) Is eco-efficiency in greenhouse gas emissions converging among European Union countries? Empir Econ 47(1):143–168

    Article  Google Scholar 

  • CCSY (2005–2014) China City statistical yearbooks. China Statistics Press, Beijing

  • CESY (2005–2014) China energy statistical yearbooks. China Statistics Press, Beijing

  • CEY (2005–2014) China environment yearbooks. China Environment Yearbook Press, Beijing

  • Chen SY (2009) Energy consumption, \(\text{ CO }_2\) emission and sustainable development in Chinese industry. Econ Res J 2009(4):41–55 (in Chinese)

    Google Scholar 

  • Cheng G (2014) Data envelopment analysis: methods and MaxDEA software. Intellectual Property Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis: a comprehensive text with models, applications, references and DEA-Solver software, 2nd edn. Springer, New York

    Google Scholar 

  • Criado CO, Grether JM (2011) Convergence in per capita CO\(_2\) emissions: a robust distributional approach. Resour Energy Econ 33(3):637–665

    Article  Google Scholar 

  • Ezcurra R (2007) Is there cross-country convergence in carbon dioxide emissions? Energy Policy 35(2):1363–1372

    Article  Google Scholar 

  • Feng K, Davis SJ, Sun L, Li X, Guan D, Liu W, Liu Z, Hubacek K (2013) Outsourcing CO\(_2\) within China. Proc Natl Acad Sci 110(28):11654–11659

    Article  Google Scholar 

  • Friedman MJ (1992) Do old fallacies ever die? J Econ Lit 30:2129–2132

    Google Scholar 

  • Fukuyama H, Weber WL (2009) A directional slacks-based measure of technical inefficiency. Socio Econ Plan Sci 43(4):274–287

    Article  Google Scholar 

  • Grossman GM, Krueger AB (1995) Economic growth and the environment. Q J Econ 110(2):353–377

    Article  Google Scholar 

  • Huang J, Yang X, Cheng G, Wang S (2014) A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J Clean Prod 67:228–238

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change IPCC (2006) Agriculture, forestry and other land use In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories vol 4. IPCC national greenhouse gas inventories programme, Japan

  • Islam N (1995) Growth empirics: a panel data approach. Q J Econ 110(4):1127–1170

    Article  Google Scholar 

  • Islam N (2003) What have we learnt from the convergence debate? J Econ Surv 17(3):309–362

    Article  Google Scholar 

  • Jaunky VC (2013) Divergence in technical efficiency of electric utilities: evidence from the SAPP. Energy Policy 62:419–430

    Article  Google Scholar 

  • Jaunky VC, Zhang L (2016) Convergence of operational efficiency in China’s provincial power sectors. Energy J 37(SI1):3–27

    Google Scholar 

  • Jobert T, Karanfil F, Tykhonenko A (2010) Convergence of per capita carbon dioxide emissions in the EU: legend or reality? Energy Econ 32(6):1364–1373

    Article  Google Scholar 

  • Ke S, Xiang J (2012) Estimation of the fixed capital stocks in Chinese cities for 1996–2009. Stat Stud 29(7):1–10 (in Chinese)

    Google Scholar 

  • Kiviet JF (1995) On bias, inconsistency and efficiency of various estimators in dynamic panel data models. J Econom 68(1):53–78

    Article  Google Scholar 

  • Le Pen Y, Sévi B (2010) On the non-convergence of energy intensities: evidence from a pair-wise econometric approach. Ecol Econ 69(3):641–650

    Article  Google Scholar 

  • Lee CC, Chang CP (2009) Stochastic convergence of per capita carbon dioxide emissions and multiple structural breaks in OECD countries. Econ Model 26(6):1375–1381

    Article  Google Scholar 

  • Li X, Lin B (2013) Global convergence in per capita CO\(_2\) emissions. Renew Sustain Energy Rev 24:357–363

    Article  Google Scholar 

  • Li XH, Lin BQ (2015) Metafrontier energy efficiency with CO2 emissions and its convergence analysis for China. Energy Econ 48:230–241

    Article  Google Scholar 

  • Liddle B (2009) Electricity intensity convergence in IEA/OECD countries: aggregate and sectoral analysis. Energy Policy 37(4):1470–1478

    Article  Google Scholar 

  • Liddle B (2010) Revisiting world energy intensity convergence for regional differences. Appl Energy 87(10):3218–3225

    Article  Google Scholar 

  • List JA (1999) Have air pollutant emissions converged among US regions? Evidence from unit root tests. South Econ J 66(1):144–155

    Article  Google Scholar 

  • Lo AY (2012) Carbon emissions trading in China. Nat Clim Change 2(11):765–766

    Article  Google Scholar 

  • Ludovisi A (2014) Effectiveness of entropy-based functions in the analysis of ecosystem state and development. Ecol Indic 36:617–623

    Article  Google Scholar 

  • Ma C, Hailu A (2016) The marginal abatement cost of carbon emissions in China. Energy J 37(SI1):111–127

    Google Scholar 

  • Markandya A, Pedroso-Galinato S, Streimikiene D (2006) Energy intensity in transition economies: is there convergence towards the EU average? Energy Econ 28(1):121–145

    Article  Google Scholar 

  • Marrero GA (2010) Greenhouse gases emissions, growth and the energy mix in Europe. Energy Econ 32(6):1356–1363

    Article  Google Scholar 

  • McKibbin WJ, Stegman A (2005) Convergence and per capita carbon emissions. Brookings discussion papers in international economics, no. 167

  • Meng M, Payne JE, Lee J (2013) Convergence in per capita energy use among OECD countries. Energy Econ 36:536–545

    Article  Google Scholar 

  • Mielnik O, Goldemberg J (2000) Converging to a common pattern of energy use in developing and industrialized countries. Energy Policy 28(8):503–508

    Article  Google Scholar 

  • Miketa A, Mulder P (2005) Energy productivity across developed and developing countries in 10 manufacturing sectors: patterns of growth and convergence. Energy Econ 27(3):429–453

    Article  Google Scholar 

  • Ministry of Environmental Protection (MEP) (2003) Notice on quarterly reporting arrangements for key environmental protection cities. http://www.npc.gov.cn/npc/flsyywd/xingzheng/2002-07/11/content_297385.htm. Last accessed 30 Nov 2015 (in Chinese)

  • Mohammadi H, Ram R (2012) Cross-country convergence in energy and electricity consumption, 1971–2007. Energy Econ 34(6):1882–1887

    Article  Google Scholar 

  • Moutinho V, Robaina-Alves M, Mota J (2014) Carbon dioxide emissions intensity of Portuguese industry and energy sectors: a convergence analysis and econometric approach. Renew Sustain Energy Rev 40:438–449

    Article  Google Scholar 

  • Mulder P, de Groot HLF (2012) Structural change and convergence of energy intensity across OECD countries, 1970–2005. Energy Econ 34(6):1910–1921

    Article  Google Scholar 

  • Nourry M (2009) Re-examining the empirical evidence for stochastic convergence of two air pollutants with a pair-wise approach. Environ Resour Econ 44(4):555–570

    Article  Google Scholar 

  • Phillips PCB, Sul D (2007) Transition modeling and econometric convergence tests. Econometrica 75(6):1771–1855

    Article  Google Scholar 

  • Quah DT (1993) Galton’s fallacy and tests of the convergence hypothesis. Scand J Econ 95:427–443

    Article  Google Scholar 

  • Romero-Ávila D (2008) Convergence in carbon dioxide emissions among industrialised countries revisited. Energy Econ 30(5):2265–2282

    Article  Google Scholar 

  • Sala-i-Martin (1995) Regional cohesion: evidence and theories of regional growth and convergence. Discussion paper No 1075, Centre for Economic Policy Research

  • Sarafidis V, Yamagata T, Robertson D (2009) A test of cross-section dependence for a linear dynamic panel model with regresors. J Econom 148(2):149–161

    Article  Google Scholar 

  • Solow R (1956) A contribution to the theory of economic growth. Q J Econ 70:65–94

    Article  Google Scholar 

  • State Council (SC) (2007) Guidance on promoting the sustainably development of cities relying on natural resources for economic development. http://www.gov.cn/zwgk/2007-12/24/content_841978.htm. Last accessed 30 Nov 2015 (in Chinese)

  • State Council (SC) (2013) Notice on sustainable development plan for research intensive cities (2013–2020). http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm. Last accessed 30 Nov 2015 (in Chinese)

  • Strazicich MC, List JA (2003) Are CO\(_2\) emission levels converging among industrial countries? Environ Resour Econ 24(3):263–271

    Article  Google Scholar 

  • Tone K (2001) A slack-based measure of efficiency in data envelopment analysis. European J Oper Res 130(3):498–509

    Article  Google Scholar 

  • Tone K (2004) A hybrid measure of efficiency in DEA. GRIPS Research Report Series I-2004-0003, National Graduate Institute for Policy Studies (GRIPS)

  • Tone K, Tsutsui M (2010) An epsilon-based measure of efficiency in DEA-a third pole of technical efficiency. Eur J Oper Res 207(3):1554–1563

    Article  Google Scholar 

  • Van PN (2005) Distribution dynamics of CO\(_2\) emissions. Environ Resour Econ 32(4):495–508

    Article  Google Scholar 

  • Wang J, Zhang K (2014) Convergence of carbon dioxide emissions in different sectors in China. Energy 65:605–611

    Article  Google Scholar 

  • Wang Y, Zhang P, Huang D, Cai C (2014) Convergence behavior of carbon dioxide emissions in China. Econ Model 43:75–80

    Article  Google Scholar 

  • Westerlund J, Basher SA (2008) Testing for convergence in carbon dioxide emissions using a century of panel data. Environ Resour Econ 40(1):109–120

    Article  Google Scholar 

  • Yavuz NC, Yilanci V (2013) Convergence in per capita carbon dioxide emissions among G7 countries: a TAR panel unit root approach. Environ Resour Econ 54(2):283–291

    Article  Google Scholar 

  • Yu Y, Zhang Y, Song F (2015) World energy intensity revisited: a cluster analysis. Appl Econ Lett 22(14):1158–1169

    Article  Google Scholar 

  • Zhang D, Broadstock D (2016) Club convergence in the energy intensity of China. Energy J 37:137–158

    Google Scholar 

  • Zhang N, Kong F, Yu Y (2015) Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecol Indic 51:165–172

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial assistance from the National Natural Science Foundation of China (41571524), the National Social Science Foundation of China (14ZDB144), the Collaborative Innovation Center for the Development of Modern Services and New Urbanization in Hunan Province and Vice-Chancellor’s Research Awards for Early Career Investigators at the University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbo Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 22 KB)

Appendix: SBM and EBM

Appendix: SBM and EBM

1.1 Input-Oriented Meta-Frontier Slack-Based Super Energy Efficiency

Assuming that there are a total of N DMUs, H technology-heterogeneous groups and \(N_h \) DMUs in Group h, we have \(\mathop \sum \nolimits _{h=1}^H N_h =N\). Each DMU uses inputs: \({\varvec{x}}=\left[ {x_1 ,x_2 ,\ldots ,x_M } \right] \in R_+^M \) to produce desirable (good) outputs: \({\varvec{y}}=\left[ {y_1 ,y_2 ,\ldots ,y_R } \right] \in R_+^R \) and undesirable (bad) outputs: \({\varvec{b}}=\left[ {b_1 ,b_2 ,\ldots ,b_J } \right] \in R_+^J \). The frontier production technology of Group h can be expressed as follows:

$$\begin{aligned} P^{h}= & {} \left\{ \left( {{\varvec{x}}^{h},{\varvec{y}}^{h},{\varvec{b}}^{h}} \right) :\mathop \sum \limits _{n=1}^{N_h } {\varvec{\lambda }}_n^h {\varvec{x}}_n^h \le {\varvec{x}}^{h};\mathop \sum \limits _{n=1}^{N_h } {\varvec{\lambda }}_n^h {\varvec{y}}_n^h \ge {\varvec{y}}^{h};\mathop \sum \limits _{n=1}^{N_h } {\varvec{\lambda }}_n^h {\varvec{b}}_n^h \le {\varvec{b}}^{h};\right. \nonumber \\&\left. n=1,2,\ldots N_h \right\} \end{aligned}$$
(6)

where \({\varvec{\lambda }}_n^h({\ge 0})\) is a weighting vector of nth DMU in Group h with reference to the corresponding group frontier. By enveloping all group frontier technologies (Battese et al. 2004), we can also express the meta-frontier production technology as follows:

$$\begin{aligned} P^{meta}= & {} \left\{ \left( {{\varvec{x}},{\varvec{y}},{\varvec{b}}} \right) :\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{n=1}^{N_h } {\varvec{\xi }}_n^h {\varvec{x}}_n^h \le {\varvec{x}}^{h};\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{n=1}^{N_h } {\varvec{\xi }}_n^h {\varvec{y}}_n^h \ge {\varvec{y}}^{h};\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{n=1}^{N_h } {\varvec{\xi }}_n^h {\varvec{b}}_n^h \le {\varvec{b}}^{h};\right. \nonumber \\&\left. n=1,2,\ldots N_h ;h=1,2,\ldots ,H\right\} \end{aligned}$$
(7)

where \(P^{meta}=\left\{ {P^{1}\cup P^{2}\cup \cdots \cup P^{H}} \right\} \) and \({\varvec{\xi }}_n^h \left( {\ge 0} \right) \) is a weighting vector of nth DMU in Group h with reference to the meta-frontier. With group frontier and meta-frontier defined, we can now define input-oriented super efficiency SBMs for both frontiers. Assuming constant returns to scale (CRS), the optimal objective value for the oth DMU in Group ) with reference to the group frontier is estimated as:

$$\begin{aligned} \rho _{ko}^{group*}= & {} \hbox {min}\left( 1+\frac{1}{M}\mathop \sum \limits _{m=1}^M \frac{s_{mko}^x }{x_{mko} }\right) \nonumber \\&{\textit{s.t. }}x_{mko} -\mathop \sum \limits _{n=1,\ne o}^{N_k } \lambda _n^k x_{mkn} +s_{mko}^x \ge 0;\nonumber \\&\mathop \sum \limits _{n=1,\ne o}^{N_k } \lambda _n^k y_{rkn} -y_{rko} \ge 0;\nonumber \\&b_{jko} -\mathop \sum \limits _{n=1,\ne o }^{N_k } \lambda _n^k b_{jkn} \ge 0;\lambda _n^k \ge 0;\nonumber \\&m=1,2,\ldots ,M;r=1,2,\ldots ,R;j=1,2,\ldots , J \end{aligned}$$
(8)

and the same for the oth DMU in Group with reference to the meta-frontier is estimated as:

$$\begin{aligned} \rho _{ko}^{meta*}= & {} \hbox {min}\left( 1+\frac{1}{M}\mathop \sum \limits _{m=1}^M \frac{s_{mko}^x }{x_{mko} }\right) \nonumber \\&s.t.x_{mko} -\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{\begin{array}{c} n=1,\ne o \\ {\textit{if h}}=k \end{array}}^{N_k } \xi _n^h x_{mhn} +s_{mko}^x \ge 0;\nonumber \\&\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{\begin{array}{c} n=1,\ne o \\ {\textit{if h}}=k \end{array}}^{N_k } \xi _n^h y_{rhn} -y_{rko} \ge 0;\nonumber \\&b_{jko}-\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{\begin{array}{c} n=1,\ne o\\ {\textit{if h}}=k \end{array}}^{N_k } \xi _n^h b_{jhn} \ge 0;\xi _n^h \ge 0;\nonumber \\&m=1,2,\ldots ,M;r=1,2,\ldots ,R;j=1,2,\ldots ,J \end{aligned}$$
(9)

where \(\lambda \) in Model 8 and \(\xi \) in Model 9 are nonnegative weights, and \(s_{mko}^x \) represents the input slacks. The difference between the super efficiency model and the standard model is that \(\hbox {DMU}_{\mathrm{ko}}\) in the reference set in the super efficiency model is excluded (Andersen and Petersen 1993), which is denoted by \(n\ne o\). Adding the constraints \(\mathop \sum \nolimits _{n=1,\ne o}^{N_k } \lambda _n^k =1\) to 8 and \(\mathop \sum \nolimits _{h=1}^H \mathop \sum \nolimits _{n=1,\ne {\textit{o if h}}=k}^{N_k } \xi _n^k =1\) to 9 will impose the variable returns to scale (VRS) assumption.

The optimal object values estimated in Model 8 and 9 are sometimes taken as the measure of energy efficiency. However, these values relate to the averages of the slacks of all inputs and maximize the average improvements of all relevant factors for the evaluated DMU to reach the corresponding frontier. One should focus on the slack of energy instead of the average slack of all inputs when measuring energy efficiency (Zhang et al. 2015). Suppose the actual energy input is \(x_e \), and the energy slacks corresponding to the meta-frontier by solving the Model 9 is \(S_e^{meta} \), then the meta-frontier energy efficiency can be calculated by

$$\begin{aligned} EE^{Meta}=\left( {x_e -S_e^{meta} } \right) /x_e \end{aligned}$$
(10)

Equation 10 defines our SBM based energy efficiency measure for the convergence analysis.

1.2 Input-Oriented Meta-Frontier Epsilon-Based Super Energy efficiency

Although the SBM has been widely used in the literature, it omits the radial characteristics of inputs and/or outputs. Tone (2004) and Cooper et al. (2007) advocate a mixture of SBM and radial model which takes into account the diversity of input/output data and their relative importance. Tone and Tsutsui (2010) proposed the epsilon-based measure (EBM) by introducing two parameters which connect radial and non-radial models. The inputs–outputs efficiency of oth DMU based on a standard input-oriented EBM model is derived by solving the following:

$$\begin{aligned} \rho _o^*= & {} \min \left( {\theta -\varepsilon \mathop \sum \limits _{m=1}^M \frac{\omega _m^- s_m^- }{x_{mo} }/\mathop \sum \limits _{m=1}^M \omega _m^- } \right) \nonumber \\&{\textit{s.t. }}{\varvec{x\lambda }} -\theta {\varvec{x_o}} +{\varvec{s}}^{-}=\mathbf{0};\nonumber \\&{\varvec{y\lambda }} \ge {\varvec{y_o}} ;{\varvec{\lambda }} \ge \mathbf{0};{\varvec{s}}^{-}\ge \mathbf{0} \end{aligned}$$
(11)

where \({\varvec{x}}\) and \({\varvec{y}}\) are the input and output vectors. \({\varvec{\lambda }}\) is a nonnegative weighting vector and \({\varvec{s}}^{-}\) is the slack vector of inputs. There are \(m+1\) parameters: \(\varepsilon \) and \(\omega _m^- \) (\(m=1,2,\ldots ,M)\). \(\varepsilon \) combines the radial \(\theta \) and the non-radial slacks terms, and takes a value between 0 and 1. The model has the radial model and the SBM model as special cases when \(\varepsilon \) takes the value of 0 and 1 respectively. Tone and Tsutsui (2010) proposed an affinity index approach to the parameters; however, Cheng (2014) pointed out that the affinity index approach may be biased in extreme cases and proposed an approach based on the adjusted Pearson correlation coefficient. Similarly, we can define input-oriented super efficiency EBMs for both frontiers and estimate the CRS optimal objective values for the oth DMU in Group ) with reference to the group frontier and the meta-frontier as:

$$\begin{aligned} \rho _{ko}^{group*}= & {} \min \left( {\theta +\varepsilon \mathop \sum \limits _{m=1}^M \frac{\omega _{mko}^- s_{mko}^x }{x_{mko} }/\mathop \sum \limits _{m=1}^M \omega _{mko}^- } \right) \nonumber \\&{\textit{s.t. }}\theta x_{mko} -\mathop \sum \limits _{n=1,\ne o }^{N_k } \lambda _n^k x_{mkn} +s_{mko}^x \ge 0;\mathop \sum \limits _{n=1,\ne o }^{N_k } \lambda _n^k y_{rkn} -y_{rko} \ge 0;\nonumber \\&b_{jko} -\mathop \sum \limits _{n=1,\ne o }^{N_k } \lambda _n^k b_{jkn} \ge 0;\lambda _n^k ,s_{mko}^x \ge 0;\theta \le 1\nonumber \\&m=1,2,\ldots ,M;r=1,2,\ldots ,R;j=1,2,\ldots ,J \end{aligned}$$
(12)

and

$$\begin{aligned} \rho _{ko}^{meta*}= & {} \min \left( {\theta +\varepsilon \mathop \sum \limits _{m=1}^M \frac{\omega _{mko}^- s_{mko}^x }{x_{mko} }/\mathop \sum \limits _{m=1}^M \omega _{mko}^- } \right) \nonumber \\&s.t.\theta x_{mko} -\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{{\begin{array}{l} {n=1,\ne o } \\ {{\textit{if h}}=k} \\ \end{array} }}^{N_k } \xi _n^h x_{mhn} +s_{mko}^x \ge 0;\nonumber \\&\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{\begin{array}{c} n=1,\ne o \\ {\textit{if h}}=k \end{array}}^{N_k } \xi _n^h y_{rhn} -y_{rko} \ge 0;\nonumber \\&b_{jko} -\mathop \sum \limits _{h=1}^H \mathop \sum \limits _{\begin{array}{c} n=1,\ne o \\ {\textit{if h}}=k \end{array}}^{N_k } \xi _n^h b_{jhn} \ge 0;\xi _n^h ,s_{mko}^x \ge 0;\theta \le 1\nonumber \\&m=1,2,\ldots ,M;r=1,2,\ldots ,R;j=1,2,\ldots ,J \end{aligned}$$
(13)

Adding the constraints \(\mathop \sum \nolimits _{n=1,\ne o }^{N_k } \lambda _n^k =1\) to 12 and \(\mathop \sum \nolimits _{h=1}^H \mathop \sum \nolimits _{n=1,\ne {\textit{o if h}}=k}^{N_k } \xi _n^k =1\) to 13 will impose the variable returns to scale (VRS) assumption.

There may be counter-intuitive cases where energy efficiency estimated with reference to the meta-frontier is greater than that estimated with reference to group frontier. To address this issue, we perform the following three steps: First, we solve 11 without considering technological heterogeneity based the adjusted Pearson correlation coefficient and get \(\varepsilon \) and \(\omega _m^- \). Second, using those parameters as priors, we then solve 12 and 13, and get energy slacks. Lastly, we calculate the meta-frontier energy efficiency using 10, which defines our EBM based energy efficiency measure for the convergence analysis.

1.3 Entropy-Weighted Approach to Environmental Pollution Index

A potentially unfortunate consequence of the conventional DEA is that extreme values of inputs or outputs results in extreme weights such that some DMUs become “efficient by default” (Asmild and Zhu 2015). A widely applied approach to addressing this issue is to generate an entropy-weighted index of multiple factors (Bian and Yang 2010; Ludovisi 2014). Here we generate follow this approach to generate a composite environmental pollution index of four pollutants: carbon dioxide, sulfur dioxide, soot-dust and waste water, which helps to alleviate the influence of extreme values of individual factors. The calculation process involves four steps.

Let \(\hbox {V}_{imt} \) denote the emission volume of pollutant m (\(m=1, 2, 3, {\ldots }, M)\) at region \(i (i=1, 2, 3, {\ldots }, K)\) in year \(t (t=1, 2, 3, {\ldots }, T)\). This is first normalized over entire sample:

$$\begin{aligned} P_{imt} =\frac{V_{imt} }{\mathop \sum \nolimits _{i=1}^K \mathop \sum \nolimits _{t=1}^T V_{imt} } \end{aligned}$$
(14)

The entropy of pollutant m at region i is defined as:

$$\begin{aligned} e_{imt} =-\frac{1}{LN\left( {K\times T} \right) }\mathop \sum \limits _{t=1}^T \left( {P_{imt} \times LN(P_{imt} } \right) ) \end{aligned}$$
(15)

Next, we calculate the weight of pollutant m at region i as:

$$\begin{aligned} \hbox {w}_{imt} =\frac{1-\hbox {e}_{imt} }{\mathop \sum \nolimits _{m=1}^M (1-\hbox {e}_{imt)} } \end{aligned}$$
(16)

The composite pollution index (PI) covering four pollutants of region i in year t is given by:

$$\begin{aligned} \hbox {PI}_{it} =\mathop \sum \nolimits _{m=1}^M \left( {\hbox {P}_{imt} \times \hbox {w}_{imt} } \right) \end{aligned}$$
(17)

Higher PI indicates higher level of environmental pollution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, Y. & Ma, C. Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity. Environ Resource Econ 70, 107–130 (2018). https://doi.org/10.1007/s10640-017-0112-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-017-0112-0

Keywords

JEL Classification

Navigation