Skip to main content

Advertisement

Log in

State-dependent block of voltage-gated sodium channels by the casein-kinase 1 inhibitor IC261

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background and Purpose IC261 (3-[(2,4,6-trimethoxyphenyl)methylidenyl]-indolin-2-one) has previously been introduced as an isoform specific inhibitor of casein kinase 1 (CK1) causing cell cycle arrest or cell death of established tumor cell lines. However, it is reasonable to assume that not all antitumor activities of IC261 are mediated by the inhibition of CK1. Meanwhile there is growing evidence that functional voltage-gated sodium channels are also implicated in the progression of tumors as their blockage suppresses tumor migration and invasion of different tumor cell lines. Thus, we asked whether IC261 functionally inhibits voltage-gated sodium channels. Experimental Approach Electrophysiological experiments were performed using the patch-clamp technique at human heart muscle sodium channels heterologously expressed in human TsA cells. Key Results IC261 inhibits sodium channels in a state-dependent manner. IC261 does not interact with the open channel and has only a low affinity for the resting state of the hNav1.5 (human voltage-gated sodium channel; Kr: 120 μM). The efficacy of IC261 strongly increases with membrane depolarisation, indicating that the inactivated state is an important target. The results of different experimental approaches finally revealed an affinity of IC261 to the inactivated state between 1 and 2 μM. Conclusion and Implications IC261 inhibits sodium channels at a similar concentration necessary to reduce CK1δ/ε activity by 50% (IC50 value 1 μM). Thus, inhibition of sodium channels might contribute to the antitumor activity of IC261.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a(x) :

fraction of total

CK1:

casein kinase 1

CKI-7:

N-(2-Aminoethyl)-5-chloroisoquinoline-8-sulphonamide

D(1–4):

domain (1–4)

[D]:

concentration of the drug

EGTA:

ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

ENa :

equilibrium potential for sodium ions

g:

conductance

h:

relative amount of non-inactivated channels

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

hNav(x) :

human voltage gated sodium channel (x)

I:

current

IC :

current amplitude under control condition

IC261:

(3-[(2,4,6-trimethoxyphenyl)methylidenyl]-indolin-2-one

IC50 :

concentration of drug which gives half-maximum inhibition

ID :

current amplitude in the presence of drug

k:

slope of the curve

Kapp :

apparent affinity constant

Kd :

drug concentration with half maximal effect

KI :

drug affinity to the inactivated state

koff :

dissociation rate

kon :

association rate

KR :

drug affinity to resting state

LA:

local anesthetic

MEM:

minimum essential medium

N:

Hill coefficient

N:

number of cells

S(1–4):

segment (1–4)

S:

residual current amplitude

SD:

standard deviation

t:

time

τ:

time constant

TsA201:

derivative of the HEK-293 cell line

TTX:

tetrodotoxin

V:

membrane potential (mV)

V50 :

membrane potential of half-maximal activation/inactivation

VGSC:

voltage gated sodium channel

Ω:

ohm, electrical resistance

References

  1. Armstrong CM (2006) Na channel inactivation from open and closed states. PNAS 103(47):17991–17996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balser JR, Nuss HB, Romashko DN, Marban E, Tomaselle GF (1996) Functional consequences of lidocain binding to slow-inactivated sodium channels. J Gen Physiol 107:643–658

    Article  CAS  PubMed  Google Scholar 

  3. Behrend L, Milne DM, Stoter M, Deppert W, Campbell LE, Meek DW et al (2000) IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene 19(47):5303–5313

    Article  CAS  PubMed  Google Scholar 

  4. Brackenbury WJ, Djamgoz MBA, Siom LL (2008) An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14(6):571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brockschmidt C, Hirner H, Huber N, Eismann T, Hillenbrand A, Giamas G et al (2008) Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut 57(6):799–806

    Article  CAS  PubMed  Google Scholar 

  6. Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 1442(2):101–112

    Article  Google Scholar 

  7. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII Nomenclature and structure-function relationships of voltage-gated sodium channels Pharmacol Rev 57:397–409

    CAS  PubMed  Google Scholar 

  8. Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH et al (2011) IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/varepsilon and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene 30(22):2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chioni AM, Shao D, Grose R, Djamgoz MBA (2010) Protein kinase a and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. In J Biochem Cell Biol 42:346–358

    Article  CAS  Google Scholar 

  10. Cummins TR, Sigworth FJ (1996) Imparied slow inactivation in mutant sodium channels. Biophys J 71:227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diss JKJ, Fraser SP, Djamgoz MBA (2004) Voltage-gated Na + channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 33:180–193

    Article  CAS  PubMed  Google Scholar 

  12. Errington AC, Stöhr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73:57–169

    Google Scholar 

  13. Fraser SP, Diss JK, Chioni AM, Mycielska M, Pan H, Yamaci RF et al (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11:5381–5389

    Article  CAS  PubMed  Google Scholar 

  14. Hanck DA, Nikitina E, McNulty MM, Fozzard HA, Lipkind GM, Sheets MF (2009) Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythmic drug affinity. Circ Res 105:492–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug receptor reaction. J Gen Physiol 69:497–515

    Article  CAS  PubMed  Google Scholar 

  16. Hondeghem LM, Katzung BG (1977) The voltage-dependent interactions of antiarrhytmic drugs with cardiac sodium channels. Biochim Biophys Acta 472:373–398

    Article  CAS  PubMed  Google Scholar 

  17. House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T et al (2010) Voltage-gated Na + channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 70:6957–6967

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ilyin VI, Hodges DD, Whittemore ER, Carter RB, Cai SX, Woodward RM (2005) V102862 (Co 102862): a potent, broad-spectrum state-dependent blocker of mammalian voltage-gated sodium channels. BJP 144:801–812

    Article  CAS  Google Scholar 

  19. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF et al (1997) Carbamazepine inhibition of neuronal Na + currents: quantitative distinction from phenytoin and possible therapeutic implications. Mol Pharmacol 51:1077–1083

    Google Scholar 

  20. Karoly R, Lenkey N, Juhasz AO, Vizi ES, Mike A (2010) Fast- or slow –inactivated state preference of Na + channel inhibitors: a simulation and experimental study. PLoS Comp Biol 6(6):e1000818

    Article  Google Scholar 

  21. Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C et al (2014) The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol 4:96

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kurihara T, Sakurai E, Toyomoto M, Kii I, Kawamoto D, Asada T et al (2014) Allevation of behavioral hypersensitivy in mouse model of inflammatory pain with two structurally different casein kinase 1 (CK1) inhibitors. Mol Pain 10:17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li M, Xiong ZG (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3:156–166

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ludolph AG, Udvardi PT, Schaz U, Henes C, Adolph O, Weigt HU et al (2010) Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br J Pharmacol 160:283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. PNAS 104(20):8520–8525

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mashhoon N, DeMaggio AJ, Tereshko V, Bergmeier SC, Egli M et al (2000) Crystal structure of a conformation-selective casein kinase-1 inhibitor. JBC 275(26):20052–20060

    Article  CAS  Google Scholar 

  27. Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK et al (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960

    Article  CAS  PubMed  Google Scholar 

  28. Nau C, Seaver M, Wang SY, Wang GK (2000) Block of human heart hH1 channels by amitryptiline. J Pharm Exp Ther 292(3):1015–1023

    CAS  Google Scholar 

  29. O’Leary ME, Chahine M (2002) Cocaine binds to a common site on open and inactivated human heart (Nav1.5) sodium channels. J Physiol 541(3):701–716

    Article  PubMed  PubMed Central  Google Scholar 

  30. Onkal R, Djamgoz MBA (2009) Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 625:206–219

    Article  CAS  PubMed  Google Scholar 

  31. Onkal R, Mattis JH, Fraser SP, Diss JKJ, Shao D et al (2008) Alternative splicing of Nav1.5: an electrophysiological comparison of “neonatal” and “adult” isoforms and critical involvement of a lysine residue. J Cell Physiol 216:716–726

    Article  CAS  PubMed  Google Scholar 

  32. Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na + channel ß subunits in development and disease. Neurosci Lett 486:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pless SA, Galpin JD, Frankel A, Ahern CA (2011) Molecular basis for class Ib anti-arrhythmic inhibition of cardia sodium channels. Nat Commun 2:351

    Article  PubMed  Google Scholar 

  34. Quan C, Mok WM, Wang GK (1996) Use-dependent inhibition of Na + currents by benzocaine homologs. Biophys J 70:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ragsdale DS, McPhee JC, Scheuer T, Catterall WA (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. PNAS 93:9270–9275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roger S, Rollin J, Barasu A, Besson P, Raynal PI, Iochmann S et al (2007) Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol 39:774–786

    Article  CAS  PubMed  Google Scholar 

  37. Rook MB, Evers MM (2012) Vos Ma, Bierhuizen MFA. Biology of cardiac sodium channel Nav1.5 expression. Cardiovascular Res 93:12–23

    Article  CAS  Google Scholar 

  38. Sakurai E, Kurihara T, Kouchi K, Saegusa H, Zonh S, Tanabe T (2009) Upregulation of casein kinase Iε in dorsal root ganglia and spinal cord after mouse spinal nerve injury contributes to neuropathic pain. Mol Pain 5:74

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sheets MF, Hanck DA (2007) Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels. J Physiol 582(1):317–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheets MF, Chen T, Hanck DA (2010) Lidocaine partially depolarizes the S4 segment in domain IV of the sodium channel. Eur J Physiol 461:91–97

    Article  Google Scholar 

  41. Starmer CF, Gran AO, Strauss HC (1977) Mechanism of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J 46:1–27

    Google Scholar 

  42. Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Loning T et al (2005) Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene 24(54):7964–7975

    Article  PubMed  Google Scholar 

  43. Stöter M, Krüger M, Banting G, Henne-Bruns D, Knippschild U (2014) Microtubules depolymerization caused by the CK1 inhibitor IC261 may be not mediated by CK1 blockage. PLoS One 9:6

    Article  Google Scholar 

  44. Sun L, Tran N, Tang F, App H, Hirth P et al (1998) Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J Med Chem 41:2588–2603

    Article  CAS  PubMed  Google Scholar 

  45. Theile JW, Cummins TR (2011) Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary MA, Park JR, Grandori C (2012) Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A 109(24):9545–9550. doi:10.1073/pnas.1121119109

  47. Walzik S, Schroeter A, Benndorf K, Zimmer T (2011) Alternative slpicing of the cardiac sodium channel creates multiple variants of mutant T1260 K channels. PLoS One 6(4):e19188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang GK, Strichartz GR (2012) State-dependent inhibition of sodium channels by local anesthetics: a 40-year evolution. Biochem (Mosc) suppl ser A membr cell biol 6(2):120–127

    Article  Google Scholar 

  49. Wang GK, Wang SY (2014) Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway. Mol Pharmacol 85:692–702

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang DW, George AL Jr, Bennett PB (1996) Comparison of heterologously expressed human cardiac and skeletal muscle Na+ channels. Biophys J 70(1):238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang YC, Kuo CC (2002) Inhibition of Na+ current by imipramine and related compoiunds: different binding kinetics as an inactivation stabilizer and as an open channel blocker. Mol Pharmacol 62:1228–1237

    Article  CAS  PubMed  Google Scholar 

  52. Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD et al (2012) Therapeutic potential for phenytoin: targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Brest Cancer Res Treat 134:603–615

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Ms. Margot Autenrieth-Kronenthaler for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Föhr.

Ethics declarations

Conflict of interest

Karl Josef Föhr declares that he has no conflict of interest. Uwe Knippschild declares that he has no conflict of interest. Anna Herkommer declares that she has no conflict of interest. Christian Peifer declares that he has no conflict of interest. Michael Fauler declares that he has no conflict of interest. Michael Georgieff declares that he has no conflict of interest. Oliver Adolph declares that he has no conflict of interest.

Funding

The work was supported by the Department of General Surgery and the Department of Anesthesiology, University Hospital of Ulm, Germany.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Karl J. Föhr and Uwe Knippschild contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Föhr, K.J., Knippschild, U., Herkommer, A. et al. State-dependent block of voltage-gated sodium channels by the casein-kinase 1 inhibitor IC261. Invest New Drugs 35, 277–289 (2017). https://doi.org/10.1007/s10637-017-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0429-0

Keywords

Navigation