Skip to main content

Advertisement

Log in

Ganetespib overcomes resistance to PARP inhibitors in breast cancer by targeting core proteins in the DNA repair machinery

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

DNA damage repair plays essential roles in drug resistance, especially resistance to Poly (ADP-ribose) polymerase (PARP) inhibitors in the clinic. A subset of DNA repair proteins such as Breast cancer gene 1 (BRCA1), BRCA2 and RecA homolog (RAD51) are client proteins of heat shock protein 90 (Hsp90). Clearance of these DNA repair proteins by inhibition of Hsp90 is a promising strategy for overcoming resistance to PARP inhibitors. Here we report the pharmacological analysis of the highly potent second-generation Hsp90 inhibitor, ganetespib. Methods Nuclear BRCA1, BRCA2, and RAD51 expression in breast cancer cells were detected by subcellular fractionation and western blot analysis. Formation of nuclear RAD51 and γ-H2AX foci was analyzed by immunofluorescent staining. The cytotoxicity of ganetespib and ABT-888 in breast cancer cells were evaluated by cell proliferation, colony survival, and apoptosis assay. To investigate the efficacy of this therapy in vivo, SCID mice bearing MCF7 xenografts were treated with ganetespib and ABT-888, both as single agents and in combination. Results Ganetespib significantly destabilized nuclear BRCA1, BRCA2, and RAD51, and efficiently disrupted homologous recombination-mediated DNA double-strand break repair in breast cancer cells. The synergistic antitumor effects of ganetespib and the PARP inhibitor, ABT-888 were observed, and concurrent treatment with both inhibitors synergistically inhibited xenograft tumor growth. Importantly, the combined treatment was well tolerated, without significant loss of body weight or major histological changes in the breast cancer xenograft model. Conclusion These data provide a novel strategy for the treatment of breast cancer with wild type BRCA1 using combination therapy targeting Hsp90 to overcome resistance to PARP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M et al (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A 94(14):7303–7307

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  3. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105(44):17079–17084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gudmundsdottir K, Ashworth A (2006) The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25(43):5864–5874

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36(3):106–117

    Article  PubMed  Google Scholar 

  6. Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15(1):9–14

    Article  CAS  PubMed  Google Scholar 

  7. Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM et al (2012) BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci U S A 109(34):13650–13655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dungey FA, Caldecott KW, Chalmers AJ (2009) Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 8(8):2243–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Acquaviva J, Smith DL, Sang J, Friedland JC, He S, Sequeira M et al (2012) Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther 11(12):2633–2643

    Article  CAS  PubMed  Google Scholar 

  10. Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T et al (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 18(18):4973–4985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C et al (2013) Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 3(4):430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Proia DA, Sang J, He S, Smith DL, Sequeira M, Zhang C et al (2012) Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. Investig New Drugs 30(6):2201–2209

    Article  CAS  Google Scholar 

  13. Socinski MA, Goldman J, El-Hariry I, Koczywas M, Vukovic V, Horn L et al (2013) A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res 19(11):3068–3077

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275(31):23899–23903

    Article  CAS  PubMed  Google Scholar 

  15. Jiang J, Yang ES, Jiang G, Nowsheen S, Wang H, Wang T et al (2011) p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res 71(16):5546–5557

    Article  CAS  PubMed  Google Scholar 

  16. Yang ES, Nowsheen S, Rahman MA, Cook RS, Xia F (2012) Targeting BRCA1 localization to augment breast tumor sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 72(21):5547–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM (2002) Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158(4):486–492

    Article  CAS  PubMed  Google Scholar 

  18. Ashton JC (2015) Drug combination studies and their synergy quantification using the Chou-Talalay method--letter. Cancer Res 75(11):2400

    Article  CAS  PubMed  Google Scholar 

  19. Ying W, Du Z, Sun L, Foley KP, Proia DA, Blackman RK et al (2012) Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther 11(2):475–484

    Article  CAS  PubMed  Google Scholar 

  20. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244

    Article  CAS  PubMed  Google Scholar 

  21. Suhane T, Laskar S, Advani S, Roy N, Varunan S, Bhattacharyya D et al (2015) Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair. Eukaryot Cell 14(1):64–77

    Article  PubMed  Google Scholar 

  22. Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY et al (2012) HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol 64(3):415–424

    Article  CAS  PubMed  Google Scholar 

  23. Davar D, Beumer JH, Hamieh L, Tawbi H (2012) Role of PARP inhibitors in cancer biology and therapy. Curr Med Chem 19(23):3907–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dote H, Burgan WE, Camphausen K, Tofilon PJ (2006) Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 66(18):9211–9220

    Article  CAS  PubMed  Google Scholar 

  25. Proia DA, Bates RC (2014) Ganetespib and HSP90: translating preclinical hypotheses into clinical promise. Cancer Res 74(5):1294–1300

    Article  CAS  PubMed  Google Scholar 

  26. Ramalingam S, Goss G, Rosell R, Schmid-Bindert G, Zaric B, Andric Z et al (2015) A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1). Ann Oncol 26(8):1741–1748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks Synta Pharmaceuticals (Lexington) for providing Ganetespib (STA-9090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Gu or Fen Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81272901 to Juhong Jiang and No. 81372298 to Yuanzhi Lu).

Ethics approval

We declare that all experiments were performed in compliance with all laws of China.

Informed consent

For this type of study, formal consent is not required.

Additional information

Juhong Jiang and Yuanzhi Lu contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Lu, Y., Li, Z. et al. Ganetespib overcomes resistance to PARP inhibitors in breast cancer by targeting core proteins in the DNA repair machinery. Invest New Drugs 35, 251–259 (2017). https://doi.org/10.1007/s10637-016-0424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-016-0424-x

Keywords

Navigation