Skip to main content

Advertisement

Log in

Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Myricetin is a naturally omnipresent benzo-α-pyrone flavonoids derivative; has potent anticancer activity. Receptor tyrosine kinases family provides the decisive role in cancer initiation and progression. These receptors have recently caught the attention of the researchers as an attractive target to combat cancer, owing to the evidences endorsed their over-expression on cancer cells. This study is a concerted effort to explore the potent and specific multi-targeted inhibitor against RTKs and AR\ER employing molecular docking approach. IR, IGF1R, EGFR, VEGFR1, VEGFR2, and AR\ER were chosen as a protein and natural compounds as a ligand. Molecular docking procedure followed by using Maestro 9.6 (Schrödinger Inc). All natural compounds were docked with the X-ray crystal structures of selected proteins by employing grid-based ligand docking with energetics Maestro 9.6. IBS natural compounds docked with each selected protein molecules by using GLIDE high throughput virtual screening. On the basis of Gscore, we selected 20 compounds from IBS (50,000 compounds) along with 68 anticancer compounds from published literature for GLIDE extra precision molecular docking. Calculated docking free energy yielded the excellent dock score for the myricetin when docked with proteins EGFR, IR, and AR\ER. Protein-ligand interactions profile highlighted that the lipophilic, hydrogen bonding and π-π stacking interactions play a central role in protein-ligand interactions at the active site. The results of MTT assay reveal that the myricetin inhibit the viability and proliferation of cancer cells in a dose-dependent manner. Treatment with the myricetin led to down-regulation of mRNA expression of EGFR, IR, mTOR, and Bcl-2. Although, further in vitro and in vivo experimental studies are required for the experimental validation of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paule B, Brion N (2003)EGF receptors in urological cancer. Molecular basis and therapeutic involvements. In: Annales de médecine interne. p 448

  2. Di Lorenzo G, Tortora G, D’Armiento FP, De Rosa G, Staibano S, Autorino R, D’Armiento M, De Laurentiis M, De Placido S, Catalano G (2002) Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 8(11):3438–3444

    PubMed  Google Scholar 

  3. Traish A, Morgentaler A (2009) Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br J Cancer 101(12):1949–1956. doi:10.1038/sj.bjc.6605376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181. doi:10.1038/nrc2088

    Article  CAS  PubMed  Google Scholar 

  5. Scagliotti GV, Selvaggi G, Novello S, Hirsch FR (2004) The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 10(12):4227s–4232s

    Article  CAS  PubMed  Google Scholar 

  6. Buck E, Gokhale PC, Koujak S, Brown E, Eyzaguirre A, Tao N, Lerner L, Chiu MI, Wild R, Epstein D (2010) Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther 9(10):2652–2664. doi:10.1158/1535-7163.MCT-10-0318

    Article  CAS  PubMed  Google Scholar 

  7. Singh P, Alex JM, Bast F (2014) Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 31(1):1–14. doi:10.1007/s12032-013-0805-3

    Article  CAS  Google Scholar 

  8. Giudice J, Leskow FC, Arndt-Jovin DJ, Jovin TM, Jares-Erijman EA (2011) Differential endocytosis and signaling dynamics of insulin receptor variants IR-A and IR-B. J Cell Sci 124(5):801–811. doi:10.1242/jcs.076869

    Article  CAS  PubMed  Google Scholar 

  9. Avnet S, Sciacca L, Salerno M, Gancitano G, Cassarino MF, Longhi A, Zakikhani M, Carboni JM, Gottardis M, Giunti A (2009) Insulin receptor isoform A and insulin-like growth factor II as additional treatment targets in human osteosarcoma. Cancer Res 69(6):2443–2452. doi:10.1158/0008-5472.CAN-08-2645

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D (2010) Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 29(17):2517–2527. doi:10.1038/onc.2010.17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vincent EE, Elder DJ, Curwen J, Kilgour E, Hers I, Tavaré JM (2013) Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor. PLoS One 8(6), e66963. doi:10.1371/journal.pone.0066963. Print 2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine I, Belfiore A, Vigneri R (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19(5):3278–3288

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277(42):39684–39695

    Article  CAS  PubMed  Google Scholar 

  14. Hendrickson AEW, Haluska P, Schneider PA, Loegering DA, Peterson KL, Attar R, Smith BD, Erlichman C, Gottardis M, Karp JE (2009) Expression of insulin receptor isoform A and insulin-like growth factor-1 receptor in human acute myelogenous leukemia: effect of the dual-receptor inhibitor BMS-536924 in vitro. Cancer Res 69(19):7635–7643. doi:10.1158/0008-5472.CAN-09-0511

    Article  PubMed Central  Google Scholar 

  15. Bianco R, Melisi D, Ciardiello F, Tortora G (2006) Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42(3):290–294. doi:10.1016/j.ejca.2005.07.034

    Article  CAS  PubMed  Google Scholar 

  16. Singh P, Bast F (2014) Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med Chem Res 23(4):1690–1700. doi:10.1007/s00044-013-0774-2

    Article  CAS  Google Scholar 

  17. Singh P, Bast F (2014) In silico molecular docking study of natural compounds on wild and mutated epidermal growth factor receptor. Med Chem Res 23:5074–5085. doi:10.1007/s00044-014-1090-1

    Article  CAS  Google Scholar 

  18. Phillips P, Sangwan V, Borja-Cacho D, Dudeja V, Vickers S, Saluja A (2011) Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 308(2):181–188. doi:10.1016/j.canlet.2011.05.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sun F, Zheng XY, Ye J, Wu TT, Jl W, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64(4):599–606. doi:10.1080/01635581.2012.665564

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Chen S, Tang L, Shen Y, Luo L, Xu C, Liu Q, Li D (2013) Myricetin induces apoptosis in Hepg2 cells through Akt/P70s6k/Bad signaling and mitochondrial apoptotic pathway. Anticancer Agents Med Chem 13(10):1575–1581

    Article  CAS  PubMed  Google Scholar 

  21. Lee KW, Kang NJ, Rogozin EA, Kim H-G, Cho YY, Bode AM, Lee HJ, Surh Y-J, Bowden GT, Dong Z (2007) Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28(9):1918–1927

    Article  CAS  PubMed  Google Scholar 

  22. Singh P, Bast F (2015) High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res. doi:10.1007/s00044-015-1328-6

  23. da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1(4):364–369

    Article  PubMed  Google Scholar 

  24. Sunil H (2012) Inhibition studies of naturally occurring terpene based compounds with cyclin-dependent kinase 2 enzyme. J Comput Sci Syst Biol 5:2

    Google Scholar 

  25. Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66(7):3347–3350

    Article  CAS  PubMed  Google Scholar 

  26. Hillman GG (2012) Dietary agents in cancer chemoprevention and treatment. J Oncol. doi:10.1155/2012/749310

  27. Phosrithong N, Ungwitayatorn J (2010) Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res 19(8):817–835

    Article  CAS  Google Scholar 

  28. Cho JY, Park J (2008) Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulin-mediated intracellular signaling cascade. Int J Mol Sci 9(11):2217–2230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  30. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  31. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  32. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  34. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  35. Lu JJ, Crimin K, Goodwin JT, Crivori P, Orrenius C, Xing L, Tandler PJ, Vidmar TJ, Amore BM, Wilson AG (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J Med Chem 47(24):6104–6107

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54(3):355–366

    Article  CAS  PubMed  Google Scholar 

  37. Mechoulam H, Pierce EA (2005) Expression and activation of STAT3 in ischemia-induced retinopathy. Invest Ophthalmol Vis Sci 46(12):4409–4416

    Article  PubMed  Google Scholar 

  38. Shih Y-W, Wu P-F, Lee Y-C, Shi M-D, Chiang T-A (2009) Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 57(9):3490–3499

    Article  CAS  PubMed  Google Scholar 

  39. Tzeng T-F, Liou S-S, Liu I-M (2011) Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011:150752. doi:10.1093/ecam/neq017

    Article  PubMed Central  PubMed  Google Scholar 

  40. Liu I-M, Tzeng T-F, Liou S-S, Lan T-W (2007) Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci 81(21):1479–1488

    Article  CAS  PubMed  Google Scholar 

  41. Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol-Cell Physiol 275(6):C1640–C1652

    CAS  Google Scholar 

  42. Walker SR, Nelson EA, Zou L, Chaudhury M, Signoretti S, Richardson A, Frank DA (2009) Reciprocal effects of STAT5 and STAT3 in breast cancer. Mol Cancer Res 7(6):966–976

    Article  CAS  PubMed  Google Scholar 

  43. Kumamoto T, Fujii M, Hou D-X (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275(1):17–26

    Article  CAS  PubMed  Google Scholar 

  44. Morales P, Haza AI (2012) Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol 32(12):986–993

    Article  CAS  PubMed  Google Scholar 

  45. Safina A, Sotomayor P, Limoge M, Morrison C, Bakin AV (2011) TAK1–TAB2 signaling contributes to bone destruction by breast carcinoma cells. Mol Cancer Res 9(8):1042–1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gomes LR, Terra LF, Wailemann RA, Labriola L, Sogayar MC (2012) TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer 12(1):26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dumont N, Arteaga CL (2003) Targeting the TGFβ signaling network in human neoplasia. Cancer Cell 3(6):531–536

    Article  CAS  PubMed  Google Scholar 

  48. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26(5):531–568

    Article  CAS  PubMed  Google Scholar 

  49. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  50. Javelaud D, Mauviel A (2004) Mammalian transforming growth factor-βs: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol 36(7):1161–1165

    Article  CAS  PubMed  Google Scholar 

  51. Fortunel NO, Hatzfeld A, Hatzfeld JA (2000) Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis. Blood 96(6):2022–2036

    CAS  PubMed  Google Scholar 

  52. Chang C, Lee S, Yeh S, Chang T (2013) Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 33(25):3225–3234

  53. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10(1):20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Maggiolini M, Recchia A, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Ando S (2005) The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor α in human breast cancer cells. J Mol Endocrinol 35(2):269–281

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Kreisberg JI, Ghosh PM (2007) Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Curr Cancer Drug Targets 7(6):591–604

    Article  CAS  PubMed  Google Scholar 

  56. Naderi A, Hughes-Davies L (2008) A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia (NY) 10(6):542

    Article  CAS  Google Scholar 

  57. Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5(3):280–285

    Article  CAS  PubMed  Google Scholar 

  58. Lee AV, Cui X, Oesterreich S (2001) Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res 7(12):4429s–4435s

    CAS  PubMed  Google Scholar 

  59. Levin ER (2003) Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol 17(3):309–317

    Article  CAS  PubMed  Google Scholar 

  60. Sak K (2014) Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 8(16):122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139(4):646–652

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Vice Chancellor, Central University of Punjab, Bathinda, Punjab, (India) for supporting this study with infrastructural requirements. We also thank Professor P. Ramarao (Dean, Academic Affairs) Central University of Punjab, Bathinda, Punjab, India for his suggestions during the course that tremendously helped to improve this article. This study was also supported by a Senior Research Fellowship grant-in-aid from Indian Council of Medical Research (ICMR), Government of India awarded to PS.

Disclosure

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Bast, F. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 33, 575–593 (2015). https://doi.org/10.1007/s10637-015-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0240-8

Keywords

Navigation