Skip to main content

Advertisement

Log in

AD-O53.2—a novel recombinant fusion protein combining the activities of TRAIL/Apo2L and Smac/Diablo, overcomes resistance of human cancer cells to TRAIL/Apo2L

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors became promising molecules for selective targeting of tumor cells without affecting normal tissue. Unfortunately, cancer cells have developed a number of mechanisms that confer resistance to TRAIL\Apo2L-induced apoptosis, which substantiates the need for development of alternative therapeutic strategies. Here we present a recombinant variant of TRAIL\Apo2L peptide, named AD-O53.2, fused to the peptide-derived from Smac/Diablo protein—the natural inhibitor of the apoptotic X-linked IAP (XIAP) protein considered as a pro-apoptotic agent. The proposed mechanism of action for this construct involves specific targeting of the tumor by TRAIL\Apo2L followed by activation and internalization of pro-apoptotic peptide into the cancer cells. While in the cytoplasm , the Smac\Diablo peptide inhibits activity of X-linked IAP (XIAP) proteins and promotes caspase-mediated apoptosis. AD-O53.2 construct was expressed in E.coli and purified by Ion Exchange Chromatography (IEC). Derived protein was initially characterized by circular dichroism spectroscopy (CD), HPLC-SEC chromatography, surface plasmon resonance, protease activation and cell proliferation assays. Our Smac/Diablo-TRAIL fusion variant was tested against a panel of cancer cells (including lung, colorectal, pancreatic, liver, kidney and uterine) and showed a potent cytotoxic effect with the IC50 values in femtomolar range for the most sensitive cell lines, while it remained ineffective against non-transformed HUVEC cells as well as isolated normal human and rat hepatocytes. Importantly, the construct was well tolerated by animals and significantly reduced the rate of the tumor growth in colon and lung adenocarcinoma animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26

    Article  CAS  PubMed  Google Scholar 

  2. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14(3–4):337–348

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 26(21):3621–3630. doi:10.1200/JCO.2007.15.7198

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765. doi:10.1038/onc.2010.221

    Article  CAS  PubMed  Google Scholar 

  5. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, Ashkenazi A, de Vos AM (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4(4):563–571

    Article  CAS  PubMed  Google Scholar 

  6. Bremer E (2013) Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol 2013:371854. doi:10.1155/2013/371854

    PubMed Central  PubMed  Google Scholar 

  7. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388(6638):190–195. doi:10.1038/40657

    Article  CAS  PubMed  Google Scholar 

  8. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37(11):719–727

    Article  CAS  Google Scholar 

  9. Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D, Ashkenazi A (2005) Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280(49):40599–40608. doi:10.1074/jbc.M509560200

    Article  CAS  PubMed  Google Scholar 

  10. Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408(6810):377–381. doi:10.1038/35042612

    Article  CAS  PubMed  Google Scholar 

  11. Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, Ashkenazi A, Jubb AM, Mendelson DS (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28(17):2839–2846. doi:10.1200/JCO.2009.25.1991

    Article  CAS  PubMed  Google Scholar 

  12. Zhang XD, Nguyen T, Thomas WD, Sanders JE, Hersey P (2000) Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types. FEBS Lett 482(3):193–199

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Wang P, Ming L, Wood MA, Zhang L (2007) SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene 26(29):4189–4198. doi:10.1038/sj.onc.1210196

    Article  CAS  PubMed  Google Scholar 

  14. McNeish IA, Bell S, McKay T, Tenev T, Marani M, Lemoine NR (2003) Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res 286(2):186–198

    Article  CAS  PubMed  Google Scholar 

  15. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Gschwend JE, Simmet T, Debatin KM, Fulda S (2008) Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68(19):7956–7965. doi:10.1158/0008-5472.CAN-08-1296

    Article  CAS  PubMed  Google Scholar 

  16. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Möller P, Gschwend JE, Simmet T, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 69(6):2425–2434. doi:10.1158/0008-5472.CAN-08-2436

    Article  CAS  PubMed  Google Scholar 

  17. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260. doi:10.1006/abio.2000.4880

    Article  CAS  PubMed  Google Scholar 

  18. Council NR (2011) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington, DC

    Google Scholar 

  19. Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24(3):148–154

    Article  CAS  PubMed  Google Scholar 

  20. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer, Lyon

    Google Scholar 

  21. Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 85(9):923–935. doi:10.1007/s00109-007-0194-1

    Article  CAS  Google Scholar 

  22. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012. doi:10.1038/35050012

    Article  CAS  PubMed  Google Scholar 

  23. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840. doi:10.1074/jbc.M007540200

    Article  CAS  PubMed  Google Scholar 

  24. Levicar N, Nuttall RK, Lah TT, Nutall RK (2003) Proteases in brain tumour progression. Acta Neurochir (Wien) 145(9):825–838. doi:10.1007/s00701-003-0097-z

    Article  CAS  Google Scholar 

  25. Sun Y, Dong LJ (2003) Role of matrix metalloproteinases in the pathogenesis and therapy of leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 11(3):316–320

    PubMed  Google Scholar 

  26. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61(1):348–354

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katarzyna Matusiewicz, PhD from Adamed (Poland) for valuable discussion and her input in the development process sustainable support. We also thank Louis De Palatis, PhD form Center of Advanced Bio Imaging, MDACC, (Houston, USA), and Jacek Capala, PhD from National Cancer Institute, NIH (Rockville, USA) for comments and discussion.

Financial support

The work was financially supported: “3CLA—biotechnological aimed anticancer drug”. Key project—no. POIG.01.94.00-00-002/08, fulfilled as a part of Programme “Innovative Economy”, Priority 1. Research and development of modern technologies, Action 1.4. Financed by European Funds for Regional Development—85 %, government budget—15 %, years: 2008–2014.

Ethical standards declaration

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Conflict of interest

Authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Kubiński.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental materials Figure S1

(DOC 67 kb)

Supplemental materials Figure S2

(DOC 90 kb)

Supplemental materials Figure S3

(DOC 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieczykolan, J.S., Kubiński, K., Masłyk, M. et al. AD-O53.2—a novel recombinant fusion protein combining the activities of TRAIL/Apo2L and Smac/Diablo, overcomes resistance of human cancer cells to TRAIL/Apo2L. Invest New Drugs 32, 1155–1166 (2014). https://doi.org/10.1007/s10637-014-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0153-y

Keywords

Navigation