Skip to main content

Advertisement

Log in

In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in cancer, novel PI3K inhibitors such as ZSTK474, GDC-0941, NVP-BEZ235 and BKM-120 have been developed for cancer therapy. A high frequency of hotspot mutations known as E542K, E545K and H1047R in the PIK3CA gene, which encodes the catalytic subunit of PI3Kα, has been found in various types of human cancers. The hotspot PIK3CA mutations also lead to resistance to therapeutics targeting epidermal growth factor receptor (EGFR), further suggesting that inhibition of hotspot mutant PIK3CA be required for a PI3K inhibitor as anticancer drug candidate. Methods To investigate the activity of the novel PI3K inhibitors on the hotspot mutant PIK3CA, we determined the inhibition against the respective recombinant mutant PI3Kαs by biochemical assay. We further examined the activity at cellular background by determining the effect on phosphorylation of Akt (Ser473), and that on the growth of cancer cells. In addition, apoptosis and autophagy in cells with or without hotspot PIK3CA mutation induced by the four inhibitors were investigated. Results Our results indicated that each inhibitor exhibit comparable activity on the hotspot mutant PI3Kα to that on the wild type, which was further demonstrated by the cell-based assays. No clear correlation was shown between the PIK3CA genetic status and the sensitivity for apoptosis or autophagy induction. Interestingly, among the 4 PI3K inhibitors, BKM-120 is the weakest in PI3K inhibitory potency, but induces most potent apoptosis, suggesting that BKM-120 might have a unique mode of action. Conclusions Our result shows that the PI3K inhibitors exhibit potent activity on both hotspot mutant and wild type PI3Kα, suggesting they might be used to treat patients with or without PIK3CA mutation when approved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–7

    Article  CAS  PubMed  Google Scholar 

  2. Kong D, Yamori T (2009) Advances in development of phosphatidylinositol 3-kinase inhibitors. Curr Med Chem 16:2839–54

    Article  CAS  PubMed  Google Scholar 

  3. Kong D, Yamori T (2008) Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci 99:1734–40

    Article  CAS  PubMed  Google Scholar 

  4. Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–6

    Article  CAS  PubMed  Google Scholar 

  5. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11:2875–8

    Article  CAS  PubMed  Google Scholar 

  6. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  7. Whyte DB, Holbeck SL (2006) Correlation of PIK3Ca mutations with gene expression and drug sensitivity in NCI-60 cell lines. Biochem Biophys Res Commun 340:469–75

    Article  CAS  PubMed  Google Scholar 

  8. Sugita H, Dan S, Kong D, Tomida A, Yamori T (2008) A new evaluation method for quantifying PI3K activity by HTRF assay. Biochem Biophys Res Commun 377:941–5

    Article  CAS  PubMed  Google Scholar 

  9. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69:1851–7

    Article  CAS  PubMed  Google Scholar 

  10. Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H et al (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 98:545–56

    Article  CAS  PubMed  Google Scholar 

  12. Kong D, Yamori T (2007) ZSTK474 is an ATP-competitive inhibitor of class I phosphatidylinositol 3 kinase isoforms. Cancer Sci 98:1638–42

    Article  CAS  PubMed  Google Scholar 

  13. Kong DX, Yamori T (2010) ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol Sin 31:1189–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kong D, Okamura M, Yoshimi H, Yamori T (2009) Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor. Eur J Cancer 45:857–65

    Article  CAS  PubMed  Google Scholar 

  15. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I et al (2009) Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 8:1725–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G et al (2008) The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin −4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 51:5522–32

    Article  CAS  PubMed  Google Scholar 

  17. Kong DX, Yamori T. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Acta Pharmacol Sin 31:1189–97

  18. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–63

    Article  CAS  PubMed  Google Scholar 

  19. Marone R, Erhart D, Mertz AC, Bohnacker T, Schnell C, Cmiljanovic V et al (2009) Targeting melanoma with dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors. Mol Cancer Res 7:601–13

    Article  CAS  PubMed  Google Scholar 

  20. McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, Mitsiades N et al (2009) Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 69:5835–42

    Article  CAS  PubMed  Google Scholar 

  21. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11:317–28

    Article  CAS  PubMed  Google Scholar 

  22. Dan S, Okamura M, Seki M, Yamazaki K, Sugita H, Okui M et al (2010) Correlating phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: in silico and biological evaluations. Cancer Res 70:4982–94

    Article  CAS  PubMed  Google Scholar 

  23. Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H et al (2009) Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A 106:22299–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. O‘Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, Punnoose EA et al (2010) Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 16:3670–83

    Article  PubMed  Google Scholar 

  25. Yamori T, Matsunaga A, Sato S, Yamazaki K, Komi A, Ishizu K et al (1999) Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel. Cancer Res 59:4042–9

    CAS  PubMed  Google Scholar 

  26. Kong D, Yamori T (2012) JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs. Bioorg Med Chem 20:1947–51

    Article  CAS  PubMed  Google Scholar 

  27. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–12

    Article  CAS  PubMed  Google Scholar 

  28. Nakatsu N, Nakamura T, Yamazaki K, Sadahiro S, Makuuchi H, Kanno J et al (2007) Evaluation of action mechanisms of toxic chemicals using JFCR39, a panel of human cancer cell lines. Mol Pharmacol 72:1171–80

    Article  CAS  PubMed  Google Scholar 

  29. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D et al (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–66

    Article  CAS  PubMed  Google Scholar 

  30. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kong D, Dan S, Yamazaki K, Yamori T (2010) Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 46:1111–21

    Article  CAS  PubMed  Google Scholar 

  32. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61:348–54

    CAS  PubMed  Google Scholar 

  33. Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M et al (2012) Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther 11:1747–57

    Article  CAS  PubMed  Google Scholar 

  34. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM et al (2009) NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 8:2204–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zou CY, Smith KD, Zhu QS, Liu J, McCutcheon IE, Slopis JM et al (2009) Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor. Mol Cancer Ther 8:1157–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. S. Isoyama, Ms. Y. Nishimura, Ms. Y. Ohashi, Ms. Y. Mukai, Ms. M. Okamura, Ms. M. Seki, and Ms. N. Tamaki for their assistance in cell-based assays. ZSTK474 was kindly provided by Zenyaku Kogyo Co. Ltd. This work was supported in part by a grants-in-aid of the Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to T. Yamori and S. Dan (20015048); a grants-in-aid for Scientific Research (A) from Japan Society for the Promotion of Science to T. Yamori and S. Dan (221S0001); grants from National Natural Science Foundation of China (81373441), the Natural Science Foundation of Tianjin (12JCZDJC25800), and Japan Society for the Promotion of Science (BR131302, S-12105).

Conflicts of interest

Shingo Dan has a research fund from Zenyaku Kogyo Co. Ltd, which is the proprietary company of ZSTK474. No conflict of interest is declared for the other authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dexin Kong or Shingo Dan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

HER-2 expression in 39 human cancer cell lines (JFCR39) The expressions of HER-2 in the 39 human cancer cell lines including lung cancer, NCI-H23, NCI-H226, NCI-H522, NCI-H460, A549, DMS273 and DMS114; colorectal cancer, HCC-2998, KM-12, HT-29, HCT-15 and HCT-116; gastric cancer, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74 and St-4; ovarian cancer, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8 and SK-OV-3; breast cancer, BSY-1, HBC-4, HBC-5, MDA-MB-231 and MCF-7; renal cancer, RXF-631L and ACHN; melanoma, LOX-IMVI; glioma, U251, SF-295, SF-539, SF-268, SNB-75 and SNB-78; prostate cancer, DU-145 and PC-3, were detected by Western blot. Compared with other cell lines, HER-2 expressions in SKOV-3 and HBC-5 were much higher. Data represent three independent experiments. (PPT 258 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Yamori, T., Yamazaki, K. et al. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA. Invest New Drugs 32, 1134–1143 (2014). https://doi.org/10.1007/s10637-014-0152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0152-z

Keywords

Navigation