Skip to main content

Advertisement

Log in

Flicker cone function in normal and day blind sheep: a large animal model for human achromatopsia caused by CNGA3 mutation

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

Recently we reported on day blindness in sheep caused by a mutation in the CNGA3 gene, thus making affected sheep a naturally occurring large animal model for therapeutic intervention in CNGA3 achromatopsia patients. The purpose of this study was to characterize flicker cone function in normal and day blind sheep, with the aim of generating a normative data base for ongoing gene therapy studies.

Methods

Electoretinographic (ERG) cone responses were evoked with full-field conditions in 10 normal, 6 heterozygous carriers and 36 day blind sheep. Following light adaptation (10 min, 30 cd/m2), responses were recorded at four increasing light intensities (1, 2.5, 5 and 10 cd s/m2). At each of these intensities, a single photopic flash response followed by 8 cone flicker responses (10–80 Hz) was recorded. Results were used to generate a normative data base for the three groups. Differences between day blind and normal control animals were tested in two age-matched groups (n = 10 per group).

Results

The normal sheep cone ERG wave is bipartite in nature, with critical flicker fusion frequency (CFF) >80 Hz. In all four flash intensities, the single photopic flash a-wave and b-wave amplitudes were significantly lower (p < 0.005), and implicit times significantly delayed (p < 0.0001), in day blind animals. In all four flash intensities, CFF values were significantly lower (p < 0.0001) in day blind sheep.

Conclusions

Cone function is severely depressed in day blind sheep. Our results will provide a normative data base for ongoing gene therapy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simunovic MP, Moore AT (1998) The cone dystrophies. Eye 12(Pt 3b):553–565

    Article  PubMed  Google Scholar 

  2. Kohl S, Marx T, Giddings I, Jägle H, Jacobson SG, Apfelstedt-Sylla E, Zrenner E, Sharpe LT, Wissinger B (1998) Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19(3):257–259

    Article  CAS  PubMed  Google Scholar 

  3. Wissinger B, Gamer D, Jägle H, Giorda R, Marx T, Mayer S, Tippmann S, Broghammer M, Jurklies B, Rosenberg T, Jacobson SG, Sener EC, Tatlipinar S, Hoyng CB, Castellan C, Bitoun P, Andreasson S, Rudolph G, Kellner U, Lorenz B, Wolff G, Verellen-Dumoulin C, Schwartz M, Cremers FP, Apfelstedt-Sylla E, Zrenner E, Salati R, Sharpe LT, Kohl S (2001) CNGA3 mutations in hereditary cone photoreceptor disorders. Am J Hum Genet 69(4):722–737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Winick JD, Blundell ML, Galke BL, Salam AA, Leal SM, Karayiorgou M (1999) Homozygosity mapping of the Achromatopsia locus in the Pingelapese. Am J Hum Genet 64(6):1679–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bright SR, Brown TE, Varnum MD (2005) Disease-associated mutations in CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated channels. Mol Vis 11:1141–1150

    CAS  PubMed  Google Scholar 

  6. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jägle H, Rosenberg T, Kellner U, Lorenz B, Salati R, Jurklies B, Farkas A, Andreasson S, Weleber RG, Jacobson SG, Rudolph G, Castellan C, Dollfus H, Legius E, Anastasi M, Bitoun P, Lev D, Sieving PA, Munier FL, Zrenner E, Sharpe LT, Cremers FP, Wissinger B (2005) CNGB3 mutations account for 50 % of all cases with autosomal recessive achromatopsia. Eur J Hum Genet 13(3):302–308

    Article  CAS  PubMed  Google Scholar 

  7. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadalà M, Jacobson SG, Wissinger B (2002) Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia. Am J Hum Genet 71(2):422–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Thiadens AA, den Hollander AI, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll-Ramirez N, Leroy BP, van den Born LI, Hoyng CB, Cremers FP, Klaver CC (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85(2):240–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Thiadens AA, Slingerland NW, Roosing S, van Schooneveld MJ, van Lith-Verhoeven JJ, van Moll-Ramirez N, van den Born LI, Hoyng CB, Cremers FP, Klaver CC (2009) Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology 116(10):1984.e1981–1989.e1981

  10. Zelinger L, Greenberg A, Kohl S, Banin E, Sharon D (2010) An ancient autosomal haplotype bearing a rare achromatopsia-causing founder mutation is shared among Arab Muslims and Oriental Jews. Hum Genet 128(3):261–267

    Article  PubMed  Google Scholar 

  11. Shamir MH, Ofri R, Bor A, Brenner O, Reicher S, Obolensky A, Averbukh E, Banin E, Gootwine E (2010) A novel day blindness in sheep: epidemiological, behavioural, electrophysiological and histopathological studies. Vet J 185(2):130–137

    Article  PubMed  Google Scholar 

  12. Reicher S, Seroussi E, Gootwine E (2010) A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics 95(2):101–104

    Article  CAS  PubMed  Google Scholar 

  13. Al-Saikhan FI (2013) The gene therapy revolution in ophthalmology. Saudi J Ophthalmol 27(2):107–111

    Article  PubMed Central  PubMed  Google Scholar 

  14. Sahel JA, Roska B (2013) Gene therapy for blindness. Annu Rev Neurosci 36:467–488

    Article  CAS  PubMed  Google Scholar 

  15. Pang JJ, Deng WT, Dai X, Lei B, Everhart D, Umino Y, Li J, Zhang K, Mao S, Boye SL, Liu L, Chiodo VA, Liu X, Shi W, Tao Y, Chang B, Hauswirth WW (2012) AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS ONE 7(4):e35250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic E, Bai L, Huber G, Beck SC, Fahl E, Büning H, Paquet-Durand F, Zong X, Gollisch T, Biel M, Seeliger MW (2010) Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 18(12):2057–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM, Jacobson SG, Hauswirth WW, Bennett J (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92–95

    CAS  PubMed  Google Scholar 

  18. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, Dejneka NS, Pearce-Kelling SE, Maguire AM, Palczewski K, Hauswirth WW, Jacobson SG (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12(6):1072–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Narfström K, Vaegan, Katz M, Bragadottir R, Rakoczy EP, Seeliger M (2005) Assessment of structure and function over a 3-year period after gene transfer in RPE65−/− dogs. Doc Ophthalmol 111(1):39–48

    Article  PubMed  Google Scholar 

  20. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Averbukh E, Ofri R, Gootwine E, Ezra-Elia R, Honig HH, Rosov A, Yamin E, Obolensky A, Hauswirth WW, Banin E (2013) Recovery of visual function following gene therapy in a large animal model of CNGA3 achromatopsia. Paper presented at the ARVO 2013, Seattle

  22. Galán A, Martín-Suárez EM, Granados MM, Gallardo JM, Molleda JM (2006) Comparative fluorescein angiography of the normal sheep and goat ocular fundi. Vet Ophthalmol 9(1):7–15

    Article  PubMed  Google Scholar 

  23. Lisney TJ, Ekesten B, Tauson R, Håstad O, Odeen A (2012) Using electroretinograms to assess flicker fusion frequency in domestic hens Gallus gallus domesticus. Vision Res 62:125–133

    Article  PubMed  Google Scholar 

  24. Labelle AL, Hamor RE, Narfström K, Breaux CB (2010) Electroretinography in the western gray kangaroo (Macropus fuliginosus). Vet Ophthalmol 13(Suppl):41–46

    Article  PubMed  Google Scholar 

  25. Fahim AT, Khan NW, Zahid S, Schachar IH, Branham K, Kohl S, Wissinger B, Elner VM, Heckenlively JR, Jayasundera T (2013) Diagnostic fundus autofluorescence patterns in achromatopsia. Am J Ophthalmol 156(6):1211.e1212–1219.e1212

  26. Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP (2005) Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat 25(3):248–258

    Article  CAS  PubMed  Google Scholar 

  27. Ding XQ, Harry CS, Umino Y, Matveev AV, Fliesler SJ, Barlow RB (2009) Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Hum Mol Genet 18(24):4770–4780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A, Jaissle G, Fauser S, Zrenner E, Hofmann F (1999) Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci USA 96(13):7553–7557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tanimoto N, Sothilingam V, Gloeckner G, Bryda EC, Humphries P, Biel M, Seeliger MW (2014) Auditory event-related signals in mouse ERG recordings. Doc Ophthalmol 128(1):25–32

    Article  PubMed  Google Scholar 

  30. Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DM, Dubra A, Stone EM, Neitz M, Carroll J (2011) Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci 52(10):7298–7308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thiadens AA, Roosing S, Collin RW, van Moll-Ramirez N, van Lith-Verhoeven JJ, van Schooneveld MJ, den Hollander AI, van den Born LI, Hoyng CB, Cremers FP, Klaver CC (2010) Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117(4):825.e821–830.e821

  32. Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci 48(8):3864–3871

    Article  PubMed  Google Scholar 

  33. Knave B, Moller A, Persson HE (1972) A component analysis of the electroretinogram. Vision Res 12(10):1669–1684

    Article  CAS  PubMed  Google Scholar 

  34. Smith EL, Witzel DA, Pitts DG (1976) The waveform and scotopic CFF of the sheep electroretinogram. Vision Res 16(11):1241–1245

    Article  PubMed  Google Scholar 

  35. Graydon RJ, Jolly RD (1984) Ceroid-lipofuscinosis (Batten’s disease). Sequential electrophysiologic and pathologic changes in the retina of the ovine model. Invest Ophthalmol Vis Sci 25(3):294–301

    CAS  PubMed  Google Scholar 

  36. Regnier A, Andreoletti O, Albaric O, Gruson DC, Schelcher F, Toutain PL (2011) Clinical, electroretinographic and histomorphometric evaluation of the retina in sheep with natural scrapie. BMC Vet Res 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  37. Rubin GR, Kraft TW (2007) Flicker assessment of rod and cone function in a model of retinal degeneration. Doc Ophthalmol 115(3):165–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported (in part) by Grant No. 3-00000-8290 from the Chief Scientist Office of the Ministry of Health, Israel, and by Grant No. 2011445 from the U.S.-Israel Binational Science Foundation, as well as unrestricted awards from The Joseph Alexander Foundation, Yedidut 1 Research Grant and Macula Vision Research Foundation. The authors thank Tali Bdolah-Abram for her help with statistical analysis of the data.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Ofri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezra-Elia, R., Banin, E., Honig, H. et al. Flicker cone function in normal and day blind sheep: a large animal model for human achromatopsia caused by CNGA3 mutation. Doc Ophthalmol 129, 141–150 (2014). https://doi.org/10.1007/s10633-014-9458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9458-6

Keywords

Navigation