Skip to main content
Log in

A comparison of the performance of three visual evoked potential-based methods to estimate visual acuity

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To compare visual acuities estimated by three methods of visual evoked potential (VEP) recordings to those obtained by two subjective measures [ETDRS and FrACT (Freiburg acuity test)].

Methods

Ten healthy subjects, aged between 26 and 67 years (mean 43.5), were examined. Best-corrected acuity determined by the ETDRS was between 0.03 and −0.3 logMAR (mean −0.06). Sweep VEPs (sweepVEP), pattern appearance VEPs (pappVEP) and steady-state VEPs (ssVEP) were recorded with two electrode placements (10–20 and Laplace) with best optical correction and with artificially degraded vision using five Bangerter occlusion foils, reducing acuity to about 0.1, 0.22, 0.52, 0.7 and 1.0 logMAR (0.8, 0.6, 0.3, 0.2 and 0.1 decimal scale). Two runs were performed.

Results

ETDRS and FrACT acuities showed good agreement, even though ETDRS seemed to underestimate acuity compared with FrACT at higher acuities. Laplace derivation did not improve any of the VEP-estimated acuities over the 10–20. SweepVEP tended to overestimate lower FrACT acuities, but showed good repeatability. PappVEP placed FrACT acuities into correct or neighboring categories in 87 % of cases. Average ssVEP acuity showed little difference to those of FrACT but variance was larger. ROC analysis for typical clinical application showed good performance for all three methods.

Conclusions

The two subjective measurements of acuities are well correlated. Under the conditions of our experiment, sweepVEP results were less variable and had a better repeatability than ssVEP acuities, whose analysis, in contrast to sweepVEP, can be automated. PappVEP estimates, however, offer a viable alternative, that is, quicker but of lower performance regarding the detection of low acuity thresholds. All methods had a good performance regarding minimum acuity detection if an average of two runs is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 207(3):635–652

    PubMed  CAS  Google Scholar 

  2. Harter MR, White CT (1970) Evoked cortical responses to checkerboard patterns: effect of check-size as a function of visual acuity. Electroencephalogr Clin Neurophysiol 28(1):48–54

    Article  PubMed  CAS  Google Scholar 

  3. Tyler CW, Apkarian P, Levi DM, Nakayama K (1979) Rapid assessment of visual function: an electronic sweep technique for the pattern visual evoked potential. Invest Ophthalmol Vis Sci 18(7):703–713

    PubMed  CAS  Google Scholar 

  4. Wiener DE, Wellish K, Nelson JI, Kupersmith MJ (1985) Comparisons among Snellen, psychophysical, and evoked potential visual acuity determinations. Am J Optom Physiol Opt 62(10):669–679

    Article  PubMed  CAS  Google Scholar 

  5. Johansson B, Jakobsson P (2000) Fourier analysis of steady-state visual evoked potentials in subjects with normal and defective stereo vision. Doc Ophthalmol 101(3):233–246

    Article  PubMed  CAS  Google Scholar 

  6. Towle VL, Harter MR (1979) Objective determination of human visual acuity from the visual evoked potential. Percept Psychophys 25(6):497–500

    Article  PubMed  CAS  Google Scholar 

  7. Chan H, Odom JV, Coldren J, Dove C, Chao GM (1986) Acuity estimated by visually evoked potentials is affected by scaling. Doc Ophthalmol 62(1):107–117

    Article  PubMed  CAS  Google Scholar 

  8. Harter MR, Towle VL, Zakrzewski M, Moyer SM (1977) An objective indicant of binocular vision in humans: size-specific interocular suppression of visual evoked potentials. Electroencephalogr Clin Neurophysiol 43(6):825–836

    Article  PubMed  CAS  Google Scholar 

  9. Heine S, Ruther K, Isensee J, Zrenner E (1999) Clinical significance of objective vision assessment using visually evoked cortical potentials induced by rapid pattern sequences of different spatial frequency. Klin Monatsbl Augenheilkd 215(3):175–181

    Article  PubMed  CAS  Google Scholar 

  10. Odom JV, Hoyt CS, Marg E (1981) Effect of natural deprivation and unilateral eye patching on visual acuity of infants and children. Evoked potential measurements. Arch Ophthalmol 99(8):1412–1416

    Article  PubMed  CAS  Google Scholar 

  11. Sokol S (1978) Measurement of infant visual acuity from pattern reversal evoked potentials. Vis Res 18(1):33–39

    Article  PubMed  CAS  Google Scholar 

  12. Bach M, Maurer JP, Wolf ME (2008) Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 92(3):396–403

    Article  PubMed  CAS  Google Scholar 

  13. Howe JW, Mitchell KW (1984) The objective assessment of contrast sensitivity function by electrophysiological means. Br J Ophthalmol 68(9):626–638

    Article  PubMed  CAS  Google Scholar 

  14. Ohn YH, Katsumi O, Matsui Y, Tetsuka H, Hirose T (1994) Snellen visual acuity versus pattern reversal visual-evoked response acuity in clinical applications. Ophthalmic Res 26(4):240–252

    Article  PubMed  CAS  Google Scholar 

  15. Regan D (1977) Speedy assessment of visual acuity in amblyopia by the evoked potential method. Ophthalmologica 175(3):159–164

    Article  PubMed  CAS  Google Scholar 

  16. Teping C (1981) Determination of visual acuity by the visually evoked cortical potential (author’s transl). Klin Monatsbl Augenheilkd 179(3):169–172

    Article  PubMed  CAS  Google Scholar 

  17. Hajek A, Zrenner E (1988) Improved objective visual assessment with visual evoked cortical potentials by rapid pattern stimuli sequences of different spatial frequency. Fortschr Ophthalmol 85(5):550–554

    PubMed  CAS  Google Scholar 

  18. McBain VA, Robson AG, Hogg CR, Holder GE (2007) Assessment of patients with suspected non-organic visual loss using pattern appearance visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 245(4):502–510

    Article  PubMed  Google Scholar 

  19. Bach M (1996) The Freiburg visual acuity test. Optom Vis Sci 73:49–53

    Article  PubMed  CAS  Google Scholar 

  20. American Encephalographic Society (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    Google Scholar 

  21. Jasper HH (1957) Report of the Committee on methods of clinical examination in electroencephalography. Appendix: the ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  22. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard. Doc Ophthalmol 108(2):115–123

    Article  PubMed  Google Scholar 

  23. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39(5):526–530

    Article  PubMed  CAS  Google Scholar 

  24. Mackay AM, Bradnam MS, Hamilton R (2003) Rapid detection of threshold VEPs. Clin Neurophysiol 114(6):1009–1020

    Article  PubMed  Google Scholar 

  25. Mackay AM, Hamilton R, Bradnam MS (2003) Faster and more sensitive VEP recording in children. Doc Ophthalmol 107(3):251–259

    Article  PubMed  Google Scholar 

  26. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  27. Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M (2006) Visual acuities “hand motion” and “counting fingers” can be quantified with the Freiburg visual acuity test. Invest Ophthalmol Vis Sci 47(3):1236–1240

    Article  PubMed  Google Scholar 

  28. Wesemann W (2002) Visual acuity measured via the Freiburg visual acuity test (FVT), Bailey Lovie chart and Landolt Ring chart. Klin Monatsbl Augenheilkd 219(9):660–667

    Article  PubMed  Google Scholar 

  29. Knudsen LL (2003) Visual acuity testing in diabetic subjects: the decimal progression chart versus the Freiburg visual acuity test. Graefes Arch Clin Exp Ophthalmol 241:615–618

    Article  Google Scholar 

  30. Dennis RJ, Beer JM, Baldwin JB, Ivan DJ, Lorusso FJ, Thompson WT (2004) Using the Freiburg Acuity and Contrast Test to measure visual performance in USAF personnel after PRK. Optom Vis Sci 81(7):516–524

    Article  PubMed  Google Scholar 

  31. Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M (2009) Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol 247(1):137–142

    Article  PubMed  CAS  Google Scholar 

  32. Beers AP, Riemslag FC, Spekreijse H (1992) Visual evoked potential estimation of visual activity with a Laplacian derivation. Doc Ophthalmol 79(4):383–389

    Article  PubMed  CAS  Google Scholar 

  33. Manahilov V, Riemslag FC, Spekreijse H (1992) The Laplacian analysis of the pattern onset response in man. Electroencephalogr Clin Neurophysiol 82(3):220–224

    Article  PubMed  CAS  Google Scholar 

  34. Harding GF, Rubinstein MP (1980) The scalp topography of the human visually evoked subcortical potential. Invest Ophthalmol Vis Sci 19(3):318–321

    PubMed  CAS  Google Scholar 

  35. Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vis Res 27(2):165–177

    Article  PubMed  CAS  Google Scholar 

  36. Proverbio AM, Zani A, Avella C (1997) Hemispheric asymmetries for spatial frequency discrimination in a selective attention task. Brain Cogn 34(2):311–320

    Article  PubMed  CAS  Google Scholar 

  37. Wolf M (2006) Objektive Visusbestimmung mit Visuell Evozierten Potentialen. Albert-Ludwigs-Universität, Freiburg i.Br

    Google Scholar 

  38. Ridder WH III, Tong A, Floresca T (2012) Reliability of acuities determined with the sweep visual evoked potential (sVEP). Doc Ophthalmol 124(2):99–107

    Article  PubMed  Google Scholar 

  39. Souza GS, Gomes BD, Saito CA, da Silva Filho M, Silveira LC (2007) Spatial luminance contrast sensitivity measured with transient VEP: comparison with psychophysics and evidence of multiple mechanisms. Invest Ophthalmol Vis Sci 48(7):3396–3404

    Article  PubMed  Google Scholar 

  40. Mullen K (1987) Spatial influences of colour opponent contributions to pattern detection. Vis Res 27:829–839

    Article  PubMed  CAS  Google Scholar 

  41. Arai M, Katsumi O, Paranhos FR, Lopes De Faria JM, Hirose T (1997) Comparison of Snellen acuity and objective assessment using the spatial frequency sweep PVER. Graefes Arch Clin Exp Ophthalmol 235(7):442–447

    Article  PubMed  CAS  Google Scholar 

  42. Banks MS (1977) Visual acuity development in human infants: a re-evaluation. Invest Ophthalmol Vis Sci 16(2):191–193

    PubMed  CAS  Google Scholar 

  43. Zhou P, Zhao MW, Li XX, Hu XF, Wu X, Niu LJ, Yu WZ, Xu XL (2007) A new method of extrapolating the sweep pattern visual evoked potential acuity. Doc Ophthalmol 117(2):85–91

    Article  PubMed  Google Scholar 

  44. Ridder WH 3rd (2004) Methods of visual acuity determination with the spatial frequency sweep visual evoked potential. Doc Ophthalmol 109(3):239–247

    Article  PubMed  Google Scholar 

  45. Yadav NK, Almoqbel F, Head L, Irving EL, Leat SJ (2009) Threshold determination in sweep VEP and the effects of criterion. Doc Ophthalmol 119(2):109–121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a German Research Foundation grant JA997/8-1, the Tistou and Charlotte Kerstan Foundation Vision 2000 and the Malloch foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Kurtenbach.

Additional information

Clinical Trial Registration number if required: not relevant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtenbach, A., Langrová, H., Messias, A. et al. A comparison of the performance of three visual evoked potential-based methods to estimate visual acuity. Doc Ophthalmol 126, 45–56 (2013). https://doi.org/10.1007/s10633-012-9359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9359-5

Keywords

Navigation