Skip to main content
Log in

Towards scalable synthesis of stochastic control systems

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

Formal synthesis approaches over stochastic systems have received significant attention in the past few years, in view of their ability to provide provably correct controllers for complex logical specifications in an automated fashion. Examples of complex specifications include properties expressed as formulae in linear temporal logic (LTL) or as automata on infinite strings. A general methodology to synthesize controllers for such properties resorts to symbolic models of the given stochastic systems. Symbolic models are finite abstractions of the given concrete systems with the property that a controller designed on the abstraction can be refined (or implemented) into a controller on the original system. Although the recent development of techniques for the construction of symbolic models has been quite encouraging, the general goal of formal synthesis over stochastic control systems is by no means solved. A fundamental issue with the existing techniques is the known “curse of dimensionality,” which is due to the need to discretize state and input sets. Such discretization generally results in an exponential complexity over the number of state and input variables in the concrete system. In this work we propose a novel abstraction technique for incrementally stable stochastic control systems, which does not require state-space discretization but only input set discretization, and that can be potentially more efficient (and thus scalable) than existing approaches. We elucidate the effectiveness of the proposed approach by synthesizing a schedule for the coordination of two traffic lights under some safety and fairness requirements for a road traffic model. Further we argue that this 5-dimensional linear stochastic control system cannot be studied with existing approaches based on state-space discretization due to the very large number of generated discrete states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here, we have abused notation by identifying 0 n×p with the map σ:x→0 n×p \(\phantom {\dot {i}\!}\forall x\in {\mathbb {R}}^{n}\).

  2. We refer the interested readers to Baier and Katoen (2008, Section 5.1.2) for the formal trace-based semantic of LTL formulae.

  3. Here, β and γ are the \(\phantom {\dot {i}\!}\mathcal {K}\mathcal {L}\) and \(\phantom {\dot {i}\!}\mathcal {K}_{\infty }\) functions, respectively, appearing in Eq. 3.

References

  • Angeli D (2002) A Lyapunov approach to incremental stability properties. IEEE Trans Autom Control 47(3):410–21

    Article  MathSciNet  Google Scholar 

  • Baier C, Katoen JP (2008) Principles of model checking. The MIT Press

  • Boucheron S, Lugosi G, Bousquet O (2004) Concentration inequalities. In: Advanced lectures on machine learning. Springer, pp 208–240

  • Corronc EL, Girard A, Goessler G (2013) Mode sequences as symbolic states in abstractions of incrementally stable switched systems. In: Proceedings of the 52nd IEEE conference on decision and control, pp 3225–3230

  • de Alfaro L, Henzinger TA, Majumdar R (2001) Symbolic algorithms for infinite-state games. In: Larsen KG, Nielsen M (eds) Concurrency theory (CONCUR), LNCS, vol 2154. Springer, pp 536–550

  • de Wit CC, Ojeda LRL, Kibangou AY (2012) Graph constrained CTM observer design for the grenoble south ring. In: Proceedings of the 13th IFAC symposium on control in transportation systems, vol 45, pp 197–202

  • Girard A, Pappas GJ (2007) Approximation metrics for discrete and continuous systems. IEEE Trans Autom Control 25(5):782–798

    Article  MathSciNet  Google Scholar 

  • Girard A, Pola G, Tabuada P (2009) Approximately bisimilar symbolic models for incrementally stable switched systems. IEEE Trans Autom Control 55(1):116–126

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30

    Article  MathSciNet  MATH  Google Scholar 

  • Huang L, Mao X (2009) On input-to-state stability of stochastic retarded systems with Markovian switching. IEEE Trans Autom Control 54(8):1898–1902

    Article  MathSciNet  Google Scholar 

  • Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus (graduate texts in mathematics), vol 113, 2nd edn. Springer, New York

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Stochastic modelling and applied probability, vol 23. Springer, Berlin

  • Lahijanian M, Andersson SB, Belta C (2009) A probabilistic approach for control of a stochastic system from LTL specifications. In: Proceedings of 48th IEEE conference on decision and control, pp 2236–2241

  • Liu J, Ozay N (2014) Abstraction, discretization, and robustness in temporal logic control of dynamical systems. In: Proceedings of the 17th international conference on hybrid systems: computation and control. ACM, New York, NY, USA, pp 293–302

  • Madhusudan P, Nam W, Alur R (2003) Symbolic computational techniques for solving games. Electron Notes Theor Comput Sci 89(4)

  • Majumdar R, Zamani M (2012) Approximately bisimilar symbolic models for digital control systems. In: Parthasarathy M, Seshia SA (eds) Computer aided verification (CAV), LNCS, vol 7358. Springer, pp 362–377

  • Oksendal BK (2002) Stochastic differential equations: an introduction with applications, 5th edn. Springer

  • Papachristodoulou A, Anderson J, Valmorbida G, Prajna S, Seiler P, Parrilo PA (2013) SOSTOOLS version 3.00 - sum of squares optimization toolbox for MATLAB. arXiv:http://arxiv.org/abs/1310.4716

  • Pola G, Girard A, Tabuada P (2008) Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10):2508–2516

    Article  MathSciNet  MATH  Google Scholar 

  • Pola G, Tabuada P (2009) Symbolic models for nonlinear control systems: alternating approximate bisimulations. SIAM J Control Optim 48(2):719–733

    Article  MathSciNet  MATH  Google Scholar 

  • Reißig G (2011) Computing abstractions of nonlinear systems. IEEE Trans Autom Control 56(11):2583–2598

    Article  MathSciNet  Google Scholar 

  • Reißig G, Weber A, Rungger M (2016) Feedback refinement relations for the synthesis of symbolic controllers. IEEE Trans Autom Control. doi:10.1109/TAC.2016.2593947

  • Rungger M, Zamani M (2016) SCOTS: A tool for the synthesis of symbolic controllers. In: Proceedings of the 19th international conference on hybrid systems: computation and control. ACM, New York, NY, USA, pp 99–104

  • Schmuck AK, Tabuada P, Raisch J (2015) Comparing asynchronous -complete approximations and quotient based abstractions. arXiv:http://arxiv.org/abs/1503.07139

  • Tabuada P (2009) Verification and control of hybrid systems, a symbolic approach, 1st edn. Springer

  • Tarraf DC (2014) An input-output construction of finite state ρ/μ approximations for control design. IEEE Trans Autom Control 59(12):3164–3177

    Article  MathSciNet  Google Scholar 

  • Tazaki Y, Imura J (2009) Discrete-state abstractions of nonlinear systems using multi-resolution quantizer. In: Proceedings of the 12th international conference on hybrid systems: computation and control, vol 5469, pp 351–365

  • Zamani M, Abate A (2014) Approximately bisimilar symbolic models for randomly switched stochastic systems. Syst Control Lett 69:38–46

    Article  MathSciNet  MATH  Google Scholar 

  • Zamani M, Pola G., Mazo Jr M, Tabuada P (2012) Symbolic models for nonlinear control systems without stability assumptions. IEEE Trans Autom Control 57(7):1804–1809

    Article  MathSciNet  Google Scholar 

  • Zamani M, Esfahani PM, Abate A, Lygeros J (2013) Symbolic models for stochastic control systems without stability assumptions. In: Proceedings of European Control Conference (ECC), pp 4257–4262

  • Zamani M, Esfahani PM, Majumdar R, Abate A, Lygeros J (2014a) Symbolic control of stochastic systems via approximately bisimilar finite abstractions. IEEE Trans Autom Control, Special Issue on Control of Cyber-Physical Systems, 59(12):3135–3150

  • Zamani M, Tkachev I, Abate A (2014b) Bisimilar symbolic models for stochastic control systems without state-space discretization. In: Proceedings of the 17th international conference on hybrid systems: computation and control. ACM, New York, NY, USA, pp 41–50

  • Zamani M, Abate A, Girard A (2015) Symbolic models for stochastic switched systems: a discretization and a discretization-free approach. Automatica 55:183–196

    Article  MathSciNet  Google Scholar 

  • Zamani M, Rungger M, Mohajerin Esfahani P (2016) Approximations of stochastic hybrid systems: a compositional approach. IEEE Transactions on Automatic Control. doi:10.1109/TAC.2016.2619419

Download references

Acknowledgments

This work was supported in part by the German Research Foundation (DFG) grant ZA 873/1-1 and the European Commission IAPP project AMBI 324432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Zamani.

Appendix:

Appendix:

Proof Proof of Lemma 2

Let x q X q , where x q =(u 1,u 2,…,u N ), and u q U q . Using the definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), one obtains \(\phantom {\dot {i}\!}x^{\prime }_{{\mathsf {q}}}=\left (u_{2},\ldots ,u_{N},u_{{\mathsf {q}}}\right )\in \mathbf {Post}_{u_{{\mathsf {q}}}} (x_{{\mathsf {q}}})\). Since V is a δ-ISS-M q Lyapunov function for Σ, we have:

$$\begin{array}{@{}rcl@{}} \underline\alpha\left( \left\Vert\overline\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)- \overline{H}_{{\mathsf{q}}}\left( x^{\prime}_{{\mathsf{q}}}\right)\right\Vert^{q}\right)&\leq& V(\overline\xi_{\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau), \overline{H}_{{\mathsf{q}}}\left( x^{\prime}_{{\mathsf{q}}}\right))\\ &=&V(\overline\xi_{\overline\xi_{x_{s}x_{{\mathsf{q}}}}(N\tau)u_{{\mathsf{q}}}}(\tau),\overline\xi_{x_{s} x^{\prime}_{{\mathsf{q}}}}(N\tau))\\ &=&V(\overline\xi_{\overline\xi_{x_{s}u_{1}}(\tau)(u_{2},\ldots, u_{N},u_{{\mathsf{q}}})}(N\tau),\overline\xi_{x_{s}(u_{2},\ldots,u_{N},u_{{\mathsf{q}}})}(N\tau))\\ &\leq&\mathsf{e}^{-\kappa N\tau}V(\overline\xi_{x_{s}u_{1}}(\tau),x_{s}). \end{array} $$
(24)

We refer the interested readers to the proof of Theorem 1 in Zamani et al. (2014a) to see how we derived the inequality (24). Hence, one gets

$$\begin{array}{@{}rcl@{}} \Vert\overline\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} \left( x^{\prime}_{{\mathsf{q}}}\right)\Vert\leq(\underline\alpha^{-1}(\mathsf{e}^{-\kappa N\tau}V(\overline\xi_{x_{s}u_{1}}(\tau),x_{s})))^{1/q}, \end{array} $$
(25)

because of \(\phantom {\dot {i}\!}\underline \alpha \in \mathcal {K}_{\infty }\). Since the inequality (25) holds for all x q X q and u q U q , and \(\phantom {\dot {i}\!}\underline \alpha \in \mathcal {K}_{\infty }\), inequality (8) holds. □

Proof Proof of Lemma 3

Let x q X q , where x q =(u 1,u 2,…,u N ), and u q U q . Using the definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), one obtains \(\phantom {\dot {i}\!}x^{\prime }_{{\mathsf {q}}}=\left (u_{2},\ldots ,u_{N},u_{{\mathsf {q}}}\right )\in \mathbf {Post}_{u_{{\mathsf {q}}}}(x_{{\mathsf {q}}})\). Since Σ is δ-ISS-M q and using inequality (2), we have:

$$\begin{array}{@{}rcl@{}} \Vert\overline\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} \left( x^{\prime}_{{\mathsf{q}}}\right)\Vert^{q}&=&\Vert\overline\xi_{\overline\xi_{x_{s}x_{{\mathsf{q}}}}(N\tau) u_{{\mathsf{q}}}}(\tau)-\overline\xi_{x_{s}x^{\prime}_{{\mathsf{q}}}}(N\tau)\Vert^{q}\\ &=&\Vert\overline\xi_{\overline\xi_{x_{s}u_{1}}(\tau)(u_{2},\ldots,u_{N},u_{{\mathsf{q}}})}(N\tau)- \overline\xi_{x_{s}(u_{2},\ldots,u_{N},u_{{\mathsf{q}}})}(N\tau)\Vert^{q}\\ &\leq&\beta(\Vert\overline\xi_{x_{s} u_{1}}(\tau)-x_{s}\Vert^{q},N\tau). \end{array} $$

Hence, one gets

$$\begin{array}{@{}rcl@{}} \Vert\overline\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} (x^{\prime}_{{\mathsf{q}}})\Vert\leq(\beta(\Vert\overline\xi_{x_{s}u_{1}}(\tau)-x_{s}\Vert^{q},N\tau))^{1/q}. \end{array} $$
(26)

Since the inequality (26) holds for all x q X q and all u q U q , and β is a \(\phantom {\dot {i}\!}\mathcal {K}_{\infty }\) function with respect to its first argument when the second one is fixed, inequality (10) holds. □

Proof Proof of Theorem 2

We start by proving that R is an ε-approximate simulation relation from S τ (Σ) to \(\phantom {\dot {i}\!}\overline {S}_{\mathsf {q}}({\Sigma })\). Consider any (x τ ,x q )∈R. Condition (i) in Definition 5 is satisfied because

$$ (\mathbb{E}[\Vert x_{\tau}-\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})\Vert^{q}])^{\frac{1}{q}}\leq(\underline\alpha^{-1} (\mathbb{E}[V(x_{\tau},\overline{H}_{\mathsf{q}}(x_{\mathsf{q}}))]))^{\frac{1}{q}}\leq\varepsilon. $$
(27)

We used the convexity assumption of \(\phantom {\dot {i}\!}\underline \alpha \) and the Jensen inequality (Oksendal 2002) to show the inequalities in Eq. 27. Let us now show that condition (ii) in Definition 5 holds. Consider any υ τ U τ . Choose an input u q U q satisfying

$$ \Vert \upsilon_{\tau}-u_{{\mathsf{q}}}\Vert_{\infty}=\Vert \upsilon_{\tau}(0)-u_{{\mathsf{q}}}(0)\Vert\leq\mu. $$
(28)

Note that the existence of such u q is guaranteed by U being a finite union of boxes and by the inequality μs p a n(U) which guarantees that \(\phantom {\dot {i}\!}\mathsf {U}\subseteq \bigcup _{p\in [\mathsf {U}]_{\mu }}\mathcal {B}_{{\mu }}(p)\). Consider the transition \(\phantom {\dot {i}\!}x_{\tau }\overset {\upsilon _{\tau }}{\underset {\tau }{\longrightarrow }} x^{\prime }_{\tau }=\xi _{x_{\tau }\upsilon _{\tau }}(\tau )\) \(\phantom {\dot {i}\!}\mathbb {P}\)-a.s. in S τ (Σ). Since V is a δ-ISS-M q Lyapunov function for Σ and using inequality (28), we have (cf. equation (3.3) in Zamani et al. 2014a)

$$\begin{array}{@{}rcl@{}} \mathbb{E}[V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))] &\leq& \mathbb{E}[V(x_{\tau},\overline{H}_{{\mathsf{q}}}(x_{q}))] \mathsf{e}^{-\kappa\tau}\\ &&+\frac{1}{\mathsf{e}\kappa} \rho(\|\upsilon_{\tau}-u_{{\mathsf{q}}}\|_{\infty})\leq \underline\alpha\left( \varepsilon^{q}\right) \mathsf{e}^{-\kappa\tau} + \frac{1}{\mathsf{e}\kappa}\rho(\mu). \end{array} $$
(29)

Observe that existence of u q , by the definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), implies the existence of \(\phantom {\dot {i}\!}x_{{\mathsf {q}}}\overset {u_{{\mathsf {q}}}}{\underset {{\mathsf {q}}}{\longrightarrow }}x^{\prime }_{{\mathsf {q}}}\) in \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\). Using Lemma 1, the concavity of \(\phantom {\dot {i}\!}\widehat \gamma \), the Jensen inequality (Oksendal 2002), (9), the inequalities (7), (15), (29), and triangle inequality, we obtain

$$\begin{array}{@{}rcl@{}} \mathbb{E}[V(x^{\prime}_{\tau},\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))]&=&\mathbb{E}[V(x^{\prime}_{\tau}, \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))+V(x^{\prime}_{\tau}, \overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))-V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]\\ &=& \mathbb{E}[V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]+ \mathbb{E}[V(x^{\prime}_{\tau},\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))-V(x^{\prime}_{\tau}, \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]\\ &\leq&\underline\alpha (\varepsilon^{q})\mathsf{e}^{-\kappa\tau}+\frac{1}{\mathsf{e}\kappa}\rho(\mu)+\mathbb{E}[\widehat\gamma (\Vert\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} (x^{\prime}_{{\mathsf{q}}})\Vert)]\\ &\leq&\underline\alpha(\varepsilon^{q})\mathsf{e}^{-\kappa\tau}+\frac{1}{\mathsf{e}\kappa}\rho(\mu)\\ &&+\widehat\gamma(\mathbb{E}[\Vert\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}} (\tau)-\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)+ \overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)- \overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}})\Vert])\\ &\leq&\underline\alpha(\varepsilon^{q})\mathsf{e}^{-\kappa\tau}+\frac{1}{\mathsf{e}\kappa}\rho(\mu)\\ &&+\widehat\gamma(\mathbb{E}[\Vert\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}} (\tau)-\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)\Vert]+\Vert \overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} (x^{\prime}_{{\mathsf{q}}})\Vert)\\ &\leq&\underline\alpha(\varepsilon^{q})\mathsf{e}^{-\kappa\tau}+\frac{1}{\mathsf{e}\kappa}\rho(\mu)+\widehat \gamma((h_{x_{s}}((N+1)\tau))^{\frac{1}{q}}+\eta)\leq\underline\alpha(\varepsilon^{q}). \end{array} $$

Therefore, we conclude that \(\phantom {\dot {i}\!}\left (x^{\prime }_{\tau },x^{\prime }_{{\mathsf {q}}}\right )\in {R}\) and that condition (ii) in Definition 5 holds.

Now we prove that R −1 is an ε-approximate simulation relation from \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\) to S τ (Σ). Consider any (x τ ,x q )∈R (or equivalently (x q ,x τ )∈R −1). As showed in the first part of the proof, condition (i) in Definition 5 is satisfied. Let us now show that condition (ii) in Definition 5 holds. Consider any u q U q . Choose the input υ τ = u q and consider \(\phantom {\dot {i}\!}x^{\prime }_{\tau }=\xi _{x_{\tau }\upsilon _{\tau }}(\tau )\) \(\phantom {\dot {i}\!}\mathbb {P}\)-a.s. in S τ (Σ). Since V is a δ-ISS-M q Lyapunov function for Σ, one obtains (cf. equation 3.3 in Zamani et al. 2014a):

$$ \mathbb{E}[V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]\leq \mathsf{e}^{-\kappa\tau}\mathbb{E}[V(x_{\tau},\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}}))]\leq \mathsf{e}^{-\kappa\tau}\underline\alpha\left( \varepsilon^{q}\right). $$
(30)

Using Lemma 1, the definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), the concavity of \(\phantom {\dot {i}\!}\widehat \gamma \), the Jensen inequality (Oksendal 2002), (9), the inequalities (7), (15), (30), and triangle inequality, we obtain

$$\begin{array}{@{}rcl@{}} \mathbb{E}[V(x^{\prime}_{\tau},\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))]&=&\mathbb{E}[V(x^{\prime}_{\tau}, \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))+V(x^{\prime}_{\tau}, \overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))-V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]\\ &=& \mathbb{E}[V(x^{\prime}_{\tau},\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]+ \mathbb{E}[V(x^{\prime}_{\tau},\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}))-V(x^{\prime}_{\tau}, \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau))]\\ &\leq&\mathsf{e}^{-\kappa\tau}\underline\alpha(\varepsilon^{q})+\mathbb{E}[\widehat\gamma(\Vert \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{H}_{{\mathsf{q}}} (x^{\prime}_{{\mathsf{q}}})\Vert)]\\ &\leq&\mathsf{e}^{-\kappa\tau}\underline\alpha(\varepsilon^{q})\,+\,\widehat\gamma(\mathbb{E}[\Vert \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{\xi}_{\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)+\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}}) u_{{\mathsf{q}}}}(\tau)\,-\,\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}})\Vert])\\ &\leq&\mathsf{e}^{-\kappa\tau}\underline\alpha(\varepsilon^{q})\,+\,\widehat\gamma(\mathbb{E}[\Vert \xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)-\overline{\xi}_{\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)\Vert]+\Vert\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}}) u_{{\mathsf{q}}}}(\tau)\,-\,\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}})\Vert)\\ &\leq&\mathsf{e}^{-\kappa\tau}\underline\alpha(\varepsilon^{q})+\widehat\gamma((h_{x_{s}}((N+1)\tau))^{\frac{1}{q}}+ \eta)\leq\underline\alpha(\varepsilon^{q}). \end{array} $$

Therefore, we conclude that \(\phantom {\dot {i}\!}(x^{\prime }_{\tau },x^{\prime }_{{\mathsf {q}}})\in {R}\) (or equivalently \(\phantom {\dot {i}\!}\left (x^{\prime }_{{\mathsf {q}}},x^{\prime }_{\tau }\right )\in R^{-1}\)) and condition (ii) in Definition 5 holds. □

Proof Proof of Theorem 3

We start by proving that R is an ε-approximate simulation relation from S τ (Σ) to \(\phantom {\dot {i}\!}\overline {S}_{\mathsf {q}}({\Sigma })\). Consider any (x τ ,x q )∈R. Condition (i) in Definition 5 is satisfied by the definition of R. Let us now show that condition (ii) in Definition 5 holds. Consider any υ τ U τ . Choose an input u q U q satisfying

$$ \Vert \upsilon_{\tau}-u_{{\mathsf{q}}}\Vert_{\infty}=\Vert \upsilon_{\tau}(0)-u_{{\mathsf{q}}}(0)\Vert\leq\mu. $$
(31)

Note that the existence of such u q is guaranteed by U being a finite union of boxes and by the inequality μs p a n(U) which guarantees that \(\phantom {\dot {i}\!}\mathsf {U}\subseteq \bigcup _{p\in [\mathsf {U}]_{\mu }}\mathcal {B}_{{\mu }}(p)\). Consider the transition \(\phantom {\dot {i}\!}x_{\tau }\overset {\upsilon _{\tau }}{\underset {\tau }{\longrightarrow }} x^{\prime }_{\tau }=\xi _{x_{\tau }\upsilon _{\tau }}(\tau )\) \(\phantom {\dot {i}\!}\mathbb {P}\)-a.s. in S τ (Σ). It follows from the δ-ISS-M q assumption on Σ and (31) that:

$$\begin{array}{@{}rcl@{}} \mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)\Vert^{q}] &\leq& \beta(\mathbb{E}[\Vert x_{\tau}-\overline{H}_{{\mathsf{q}}}(x_{q})\Vert^{q}],\tau)\\ &&+\gamma(\|\upsilon_{\tau}-u_{{\mathsf{q}}}\|_{\infty})\leq \beta(\varepsilon^{q},\tau) + \gamma(\mu). \end{array} $$
(32)

Existence of u q , by the definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), implies the existence of \(\phantom {\dot {i}\!}x_{{\mathsf {q}}}\overset {u_{{\mathsf {q}}}}{\underset {{\mathsf {q}}}{\longrightarrow }}x^{\prime }_{{\mathsf {q}}}\) in \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\). Using Eq. 9, the inequalities (5), (17), (32), and triangle inequality, we obtain

$$\begin{array}{@{}rcl@{}} (\mathbb{E}[\Vert x^{\prime}_{\tau}-\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}) \Vert^{q}])^{\frac{1}{q}} &=&(\mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)+ \xi_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)\\ &&-\overline{\xi}_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)+ \overline{\xi}_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)-\overline{H}_{\mathsf{q}} (x^{\prime}_{\mathsf{q}})\Vert^{q}])^{\frac{1}{q}}\\ &\leq& (\mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau) \Vert^{q}])^{\frac{1}{q}}+(\mathbb{E}[\Vert\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau) -\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)\Vert^{q}])^{\frac{1}{q}}\\ &&+(\mathbb{E}[\Vert\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)- \overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}})\Vert^{q}])^{\frac{1}{q}}\\&\leq&(\beta(\varepsilon^{q},\tau) + \gamma(\mu))^{\frac{1}{q}}+(h_{x_{s}}((N+1)\tau))^{\frac{1}{q}}+\eta\leq\varepsilon. \end{array} $$

Therefore, we conclude that \(\phantom {\dot {i}\!}\left (x^{\prime }_{\tau },x^{\prime }_{{\mathsf {q}}}\right )\in {R}\) and that condition (ii) in Definition 5 holds.

Now we prove that R −1 is an ε-approximate simulation relation from \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\) to S τ (Σ). Consider any (x τ ,x q )∈R (or equivalently (x q ,x τ )∈R −1). Condition (i) in Definition 5 is satisfied by the definition of R. Let us now show that condition (ii) in Definition 5 holds. Consider any u q U q . Choose the input υ τ = u q and consider \(\phantom {\dot {i}\!}x^{\prime }_{\tau }=\xi _{x_{\tau }\upsilon _{\tau }}(\tau )\) \(\phantom {\dot {i}\!}\mathbb {P}\)-a.s. in S τ (Σ). Since Σ is δ-ISS-M q , one obtains:

$$ \mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}}) u_{{\mathsf{q}}}}(\tau)\Vert^{q}]\leq \beta(\mathbb{E}[\Vert x_{\tau}-\overline{H}_{{\mathsf{q}}} (x_{{\mathsf{q}}})\Vert^{q}],\tau)\leq\beta(\varepsilon^{q},\tau). $$
(33)

Using definition of \(\phantom {\dot {i}\!}\overline {S}_{{\mathsf {q}}}({\Sigma })\), (9), the inequalities (5), (17), (33), and the triangle inequality, we obtain

$$\begin{array}{@{}rcl@{}} (\mathbb{E}[\Vert x^{\prime}_{\tau}-\overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}}) \Vert^{q}])^{\frac{1}{q}} &=&(\mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{\mathsf{q}} (x_{\mathsf{q}}) u_{\mathsf{q}}}(\tau)+ \xi_{\overline{H}_{\mathsf{q}} (x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)\\ &&-\overline{\xi}_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)+ \overline{\xi}_{\overline{H}_{\mathsf{q}}(x_{\mathsf{q}})u_{\mathsf{q}}}(\tau)-\overline{H}_{\mathsf{q}} (x^{\prime}_{\mathsf{q}})\Vert^{q}])^{\frac{1}{q}}\\ &\leq& (\mathbb{E}[\Vert x^{\prime}_{\tau}-\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau) \Vert^{q}])^{\frac{1}{q}}+(\mathbb{E}[\Vert\xi_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau) -\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)\Vert^{q}])^{\frac{1}{q}}\\ &&+(\mathbb{E}[\Vert\overline{\xi}_{\overline{H}_{{\mathsf{q}}}(x_{{\mathsf{q}}})u_{{\mathsf{q}}}}(\tau)- \overline{H}_{{\mathsf{q}}}(x^{\prime}_{{\mathsf{q}}})\Vert^{q}])^{\frac{1}{q}}\\ &\leq&(\beta(\varepsilon^{q}, \tau))^{\frac{1}{q}}+(h_{x_{s}}((N+1)\tau))^{\frac{1}{q}}+\eta\leq\varepsilon. \end{array} $$

Therefore, we conclude that \(\phantom {\dot {i}\!}(x^{\prime }_{\tau },x^{\prime }_{{\mathsf {q}}})\in {R}\) (or equivalently \(\phantom {\dot {i}\!}\left (x^{\prime }_{{\mathsf {q}}},x^{\prime }_{\tau }\right )\in R^{-1}\)) and condition (ii) in Definition 5 holds. □

Proof Proof of Theorem 10

Denote \(\phantom {\dot {i}\!}\hat \theta := \theta - r/2>0\), and \(\mathbf {d}_{M}(a):=\left (\frac {1}{M} \sum \limits _{i=1}^{M} \|\xi ^{i}_{x_{s} x_{\mathsf {q}}}-a\|^{q}\right )^{\frac {1}{q}}\) for all \(a\in {\mathbb {R}}^{n}\). It follows from Kloeden and Platen (1992, Theorem 4.5.4) that for all p≥1 and \(\phantom {\dot {i}\!}a\in {\mathbb {R}}^{n}\)

$$\mathbb{E}\left[\|\xi_{x_{s}x_{\mathsf{q}}}(N\tau) - a\|^{p}\right] \leq b(a, p). $$

Since we do not assume that the set of continuous states is bounded, the distance can be any positive real number, and the usual method of applying Hoeffding’s inequality does not work in this case. Instead we use Chernoff-type inequality (e.g. see above formula (1) in Boucheron et al. 2004), which implies that for any a A r :

$$\mathbb{P}\left( \left|\left( \mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a^{\prime})\right)^{q} - (\mathbf{d}_{M}(a^{\prime}))^{q}\right|\geq \hat\theta\right) \leq \frac{b(a^{\prime}, 2q)}{M\hat\theta^{2}}. $$

Furthermore, since xx q is Hölder continuous with power q,

$$\mathbb{P}\left( \left|\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a^{\prime}) - \mathbf{d}_{M}(a^{\prime})\right|\geq \hat\theta\right) \leq \frac{b(a^{\prime}, 2q)}{M\hat\theta^{2q}}. $$

Thus, for the union of such events over a A r, we have

$$ \mathbb{P}\left( \exists a^{\prime}\in A^{r} \text{ s.t. }\left|\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a^{\prime}) - \mathbf{d}_{M}(a^{\prime})\right|\geq \hat\theta\right)\leq \frac{|A^{r}|b(a^{*}, 2q)}{M\hat\theta^{2q}}, $$
(34)

due to the fact that the probability of a union is dominated by the sum of probabilities. Let [⋅]:AA r be any surjective map such that ∥a−[a]∥≤r/2 for all aA, i.e. [⋅] chooses an r/2-close point in the grid A r. Using this map, we can extrapolate the inequality (34) to the whole set A since

$$\begin{array}{@{}rcl@{}} \left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a) - \mathbf{d}_{M}([a])\right\vert &\leq& \left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a) \,-\, \mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),[a])\right\vert \,+\, \left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),[a])\! - \mathbf{\!d}_{M}([a])\right\vert\\ &\leq& r/2 +\left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),[a]) - \mathbf{d}_{M}([a])\right\vert, \end{array} $$

where we used the fact that |d(H q (x q ),a)−d(H q (x q ),[a])|≤∥a−[a]∥ by the triangle inequality. As a result, the following inequality holds:

$$\begin{array}{@{}rcl@{}} &&\mathbb{P}\left( \exists a\in A \text{ s.t. }\left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a) - \mathbf{d}_{M}([a])\right\vert\geq \theta\right)\\ &&\leq \mathbb{P}\left( \exists a^{\prime}\in A^{r}\text{ s.t. }\left\vert\mathbf{d}\left( H_{\mathsf{q}}(x_{\mathsf{q}}),a^{\prime}\right) - \mathbf{d}_{M}\left( a^{\prime}\right)\right\vert\geq \hat\theta\right). \end{array} $$
(35)

On the other hand, since for any two functions \(\phantom {\dot {i}\!}f,g:A\to {\mathbb {R}}\) it holds that

$$\left\vert\inf_{a\in A}f(a) - \inf_{a\in A}g(a)\right\vert\leq\sup_{a\in A}|f(a) - g(a)|, $$

we obtain that

$$\mathbb{P}\left( \left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),A) - \mathbf{d}^{r}_{M}\right\vert\geq \theta\right)\leq \mathbb{P}\left( \exists a\in A \text{ s.t. }\left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),a) - \mathbf{d}_{M}([a])\right\vert\geq \theta\right). $$

Combining the latter inequality with (34) and (35) yields:

$$\mathbb{P}\left( \left\vert\mathbf{d}(H_{\mathsf{q}}(x_{\mathsf{q}}),A) - \mathbf{d}^{r}_{M}\right\vert\geq \theta\right) \leq \frac{|A^{r}|b(a^{*}, 2q)}{M\hat\theta^{2q}}, $$

and in case M satisfies the assumption of the theorem, the right-hand side is bounded above by π as desired. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M., Tkachev, I. & Abate, A. Towards scalable synthesis of stochastic control systems. Discrete Event Dyn Syst 27, 341–369 (2017). https://doi.org/10.1007/s10626-016-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-016-0233-6

Keywords

Navigation