Skip to main content
Log in

On the covering radius of the third order Reed–Muller code RM(3, 7)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The covering radius of the third order Reed–Muller code of length 128 has been an open problem for many years. The best upper bound of it is known to be 22. In this paper, we give a sufficient and necessary condition for the covering radius of RM(3, 7) to be equal to 22. Using this condition, we prove that the covering radius of RM(3, 7) in RM(4, 7) is 20. Therefore, if the third-order nonlinearity of a 7-variable Boolean function is greater than 20, then its algebraic degree is at least 5. As a corollary, we conclude that the covering radius of RM(3, 7) in the set of 2-resilient Boolean functions is at most 20 which improves the bound given by Borissov et al. (IEEE Trans Inf Theory 51:1182–1189, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlekamp E.R., Welch L.R.: Weight distributions of the cosets of the (32, 6) Reed–Muller code. IEEE Trans. Inf. Theory 18(1), 203–207 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  2. Borissov Y., Braeken A., Nikova S., Preneel B.: On the covering radii of binary Reed–Muller codes in the set of resilient Boolean functions. IEEE Trans. Inf. Theory 51(3), 1182–1189 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlet C.: The complexity of Boolean functions from cryptographic viewpoint (2006). http://dblp.uni-trier.de/db/conf/dagstuhl/P6111.html.

  4. Carlet C.: Boolean functions for cryptography and error correcting codes. Chapter of the monography “Boolean Models and Methods in Mathematics, Computer Science, and Engineering”, pp 257–397. Cambridge University Press, Cambridge (2010). http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html.

  5. Carlet C., Mesnager S.: Improving the upper bounds on the covering radii of binary Reed–Muller codes. IEEE Trans. Inf. Theory 53(1), 162–173 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. North-Holland, Amsterdam (1997).

    MATH  Google Scholar 

  7. Cusick T.W., Stănică P.: Cryptographic Boolean Functions and Applications. Elsevier-Academic Press, New York (2009).

    MATH  Google Scholar 

  8. Gode R., Gangopadhyay S.: Third-order nonlinearities of a subclass of Kasami functions. Cryptogr. Commun. 2(1), 69–83 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou X.D.: Some results on the covering radii of Reed–Muller codes. IEEE Trans. Inf. Theory 39(2), 366–378 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou X.D.: Covering radius of the Reed–Muller code \(R(1, 7)\)—a simpler proof. J. Comb. Theory Ser. A 74(2), 337–341 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. Hou X.D.: On the covering radius of \(R(1, m)\) in \(R(3, m)\). IEEE Trans. Inf. Theory 42(3), 1035–1037 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou X.D.: The covering radius of \(R(1, 9)\) in \(R(4, 9)\). Des. Codes Cryptogr. 8(3), 285–292 (1996).

    Article  MathSciNet  Google Scholar 

  13. Hou X.D.: On the norm and covering radius of the first order Reed–Muller codes. IEEE Trans. Inf. Theory 43(3), 1025–1027 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. Kavut S., Yücel M.D.: 9-Variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class. Inf. Comput. 208(4), 341–350 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. Kavut S., Maitra S., Yücel M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–1751 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurosawa K., Iwata T., Yoshiwara T.: New Covering Radius of Reed–Muller Codes for \(t\)-Resilient Functions. Selected Areas in Cryptography-SAC. LNCS, vol. 2259, pp. 75–86. Springer, Berlin (2001).

  17. Langevin P.: Classification of Boolean Functions Under the Affine Group. http://langevin.univ-tln.fr/project/agl/agl.html.

  18. Maiorana J.A.: A classification of the cosets of the Reed–Muller code R(1,6). Math. Comput. 57(195), 403–414 (1991).

    MathSciNet  MATH  Google Scholar 

  19. McLoughlin A.: The covering radius of the \((m-3)\)-rd order Reed–Muller codes and a lower bound on the \((m-4)\)-th order Reed-Muller codes. SIAM J. Appl. Math. 37(2), 419–422 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  20. Mykkeltveit J.J.: The covering radius of the (128, 8) Reed–Muller code is 56. IEEE Trans. Inf. Theory 26(3), 359–362 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  21. Patterson N.J., Wiedemann D.H.: The covering radius of the (\(2^{15}\), 16) Reed–Muller code is at least 16276. IEEE Trans. Inf. Theory 29(3), 354–356 (1983).

    Article  MATH  Google Scholar 

  22. Rothaus O.S.: On bent functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  23. Schatz J.: The second order Reed–Muller code of length 64 has covering radius 18. IEEE Trans. Inf. Theory 27(4), 529–530 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  24. Siegenthaler T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang Q.: On the Covering Radius of the Second Order Reed–Muller Code of Length 128. Preprint.

Download references

Acknowledgements

The first author would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 61572189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qichun Wang.

Additional information

Communicated by V. A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tan, C.H. & Prabowo, T.F. On the covering radius of the third order Reed–Muller code RM(3, 7). Des. Codes Cryptogr. 86, 151–159 (2018). https://doi.org/10.1007/s10623-017-0329-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0329-5

Keywords

Mathematics Subject Classification

Navigation