Skip to main content
Log in

Multi-trial Guruswami–Sudan decoding for generalised Reed–Solomon codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An iterated refinement procedure for the Guruswami–Sudan list decoding algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list of closest codewords within an intermediate radius can be performed with improved average-case complexity while retaining the worst-case complexity. We provide a detailed description of the module minimisation, reanalysing the Mulders–Storjohann algorithm and drawing new connections to both Alekhnovich’s algorithm and Lee–O’Sullivan’s. Furthermore, we show how to incorporate the re-encoding technique of Kötter and Vardy into our iterative algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alekhnovich M.: Linear diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005).

    Google Scholar 

  2. Bassalygo L.A.: New upper bounds for error-correcting codes. Prob. Inf. Trans. 1(4), 41–44 (1965).

    Google Scholar 

  3. Beelen P., Brander K.: Key equations for list decoding of Reed–Solomon codes and how to solve them. J. Symb. Comput. 45(7), 773–786 (2010).

    Google Scholar 

  4. Beelen P., Høholdt T., Nielsen J.S.R., Wu Y.: On rational interpolation-based list-decoding and list-decoding binary Goppa codes. IEEE Trans. Inf. Theory 59(6), 3269–3281 (2013).

    Google Scholar 

  5. Bernstein D.J.: List decoding for binary Goppa codes. In: IWCC, LNCS, vol. 6639, pp. 62–80. Springer, Heidelberg (2011).

  6. Brander K.: Interpolation and list decoding of algebraic codes. Ph.D. thesis, Technical University of Denmark (2010).

  7. Cassuto Y., Bruck J., McEliece R.: On the average complexity of Reed–Solomon list decoders. IEEE Trans. Inf. Theory 59(4), 2336–2351 (2013).

    Google Scholar 

  8. Chowdhury M.F.I., Jeannerod C.P., Neiger V., Schost E., Villard G.: Faster algorithms for multivariate interpolation with multiplicities and simultaneous polynomial approximations. arXiv:1402.0643 (2014). http://arxiv.org/abs/1402.0643.

  9. von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003).

  10. Giorgi P., Jeannerod C., Villard G.: On the complexity of polynomial matrix computations. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 135–142. ACM (2003).

  11. Guruswami V., Sudan M.: Improved decoding of Reed–Solomon codes and algebraic geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999).

    Google Scholar 

  12. Johnson S.M.: A new upper bound for error-correcting codes. IEEE Trans. Inf. Theory 46, 203–207 (1962).

    Google Scholar 

  13. Kötter R., Vardy A.: A complexity reducing transformation in algebraic list decoding of Reed–Solomon codes. In: IEEE Information Theory Workshop (ITW), pp. 10–13. Paris, France (2003).

  14. Kötter R., Vardy A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 49(11), 2809–2825 (2003).

    Google Scholar 

  15. Kötter R., Ma J., Vardy A.: The re-encoding transformation in algebraic list-decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 57(2), 633–647 (2011).

    Google Scholar 

  16. Lee K., O’Sullivan M.E.: List decoding of Reed–Solomon codes from a Gröbner basis perspective. J. Symb. Comput. 43(9), 645–658 (2008).

    Google Scholar 

  17. Lenstra A.: Factoring multivariate polynomials over finite fields. J. Comput. Syst. Sci. 30(2), 235–248 (1985).

    Google Scholar 

  18. Mulders T., Storjohann A.: On lattice reduction for polynomial matrices. J. Symb. Comput. 35(4), 377–401 (2003).

    Google Scholar 

  19. Nielsen J.S.R.: List decoding of algebraic codes. Ph.D. thesis, Technical University of Denmark, Kongens Lyngby (2013).

  20. Nielsen J.S.R., Zeh A.: Multi-trial Guruswami–Sudan decoding for generalised Reed–Solomon codes. In: Workshop on Coding and Cryptography (2013).

  21. Roth R., Ruckenstein G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. IEEE Trans. Inf. Theory 46(1), 246–257 (2000).

    Google Scholar 

  22. Stein W., et al.: Sage Mathematics Software (Version 5.13, Release Date: 2013-12-15). The Sage Development Team (2013). http://www.sagemath.org.

  23. Sudan M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997).

    Google Scholar 

  24. Tang S., Chen L., Ma X.: Progressive list-enlarged algebraic soft decoding of Reed–Solomon codes. IEEE Commun. Lett. 16(6), 901–904 (2012).

    Google Scholar 

  25. Zeh A., Gentner C., Augot D.: An interpolation procedure for list decoding Reed–Solomon codes based on generalized key equations. IEEE Trans. Inf. Theory 57(9), 5946–5959 (2011).

    Google Scholar 

Download references

Acknowledgments

The authors thank Daniel Augot for fruitful discussions. This work has been supported by German Research Council Deutsche Forschungsgemeinschaft (DFG) under Grant BO 867/22-1 and Ze 1016/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan S. R. Nielsen.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, J.S.R., Zeh, A. Multi-trial Guruswami–Sudan decoding for generalised Reed–Solomon codes. Des. Codes Cryptogr. 73, 507–527 (2014). https://doi.org/10.1007/s10623-014-9951-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9951-7

Keywords

Mathematics Subject Classification

Navigation