Skip to main content
Log in

Overexpression of PARPBP Correlates with Tumor Progression and Poor Prognosis in Hepatocellular Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

PARP1-binding protein (PARPBP/PARI/C12orf48), a negative regulator of homologous recombination (HR), has been suggested to function as an oncogene in cervical, lung, and pancreatic cancer.

Objective

To investigate the expression profile of PARPBP and its role in hepatocellular carcinoma (HCC).

Methods

Using data from the Cancer Genome Atlas and Human Protein Atlas databases, PARPBP expression level and its clinical implication in HCC were identified by t test and Chi-square test. The prognostic value of PARPBP in HCC was evaluated by Kaplan–Meier method, Cox regression analysis, and nomogram. Gene set enrichment analysis (GSEA) was used to screen biological pathways correlated with PARPBP expression in HCC.

Results

PARPBP was significantly upregulated in HCC tissues compared with normal liver tissues (P < 0.05). High PARPBP expression was significantly associated with elevated serum AFP level, vascular invasion, poor tumor differentiation, and advanced TNM stage (all P < 0.05). Kaplan–Meier analyses suggested that upregulation of PARPBP was correlated with worse overall survival (OS) and recurrence-free survival (RFS) in HCC. Multivariate analyses further confirmed that PARPBP upregulation was an independent indicator of poor OS and RFS (all P < 0.05). The prognostic nomograms based on PARPBP mRNA expression and TNM stage were superior to those based on the TNM staging system alone (all P < 0.05). Besides, PARPBP DNA copy gain and miR-139-5p downregulation were associated with PARPBP upregulation in HCC. GSEA revealed that “cell cycle,” “HR,” “DNA replication,” and “p53 signaling” pathways were enriched in high PARPBP expression group.

Conclusion

PARPBP may be a promising prognostic biomarker and candidate therapeutic target in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. Rich NE, Yopp AC, Singal AG. Medical management of hepatocellular carcinoma. J Oncol Pract. 2017;13:356–364.

    Article  PubMed  Google Scholar 

  3. Su C. Survivin in survival of hepatocellular carcinoma. Cancer Lett. 2016;379:184–190.

    Article  CAS  PubMed  Google Scholar 

  4. O’Connor KW, Dejsuphong D, Park E, et al. PARI overexpression promotes genomic instability and pancreatic tumorigenesis. Cancer Res. 2013;73:2529–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moldovan GL, Dejsuphong D, Petalcorin MI, et al. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell. 2012;45:75–86.

    Article  CAS  PubMed  Google Scholar 

  6. Piao L, Nakagawa H, Ueda K, et al. C12orf48, termed PARP-1 binding protein, enhances poly(ADP-ribose) polymerase-1 (PARP-1) activity and protects pancreatic cancer cells from DNA damage. Genes Chromosom Cancer. 2011;50:13–24.

    Article  CAS  PubMed  Google Scholar 

  7. Jinawath N, Chamgramol Y, Furukawa Y, et al. Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology. 2006;44:1025–1038.

    Article  CAS  PubMed  Google Scholar 

  8. Tamura K, Furihata M, Tsunoda T, et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 2007;67:5117–5125.

    Article  CAS  PubMed  Google Scholar 

  9. Taniwaki M, Daigo Y, Ishikawa N, et al. Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int J Oncol. 2006;29:567–575.

    CAS  PubMed  Google Scholar 

  10. van Dam S, Cordeiro R, Craig T, et al. GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genomics. 2012;13:535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucl Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  Google Scholar 

  12. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404.

    Article  Google Scholar 

  13. Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28:1248–1250.

    Article  CAS  PubMed  Google Scholar 

  14. Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucl Acids Res. 2013;41:W169–W173.

    Article  PubMed  Google Scholar 

  15. Sticht C, De La Torre C, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10:7252–7259.

    Article  CAS  PubMed  Google Scholar 

  17. Northen A, Asendorf T, Walson PD, et al. Diagnostic value of alpha-1-fetoprotein (AFP) as a biomarker for hepatocellular carcinoma recurrence after liver transplantation. Clin Biochem. 2018;52:20–25.

    Article  CAS  PubMed  Google Scholar 

  18. Hou SC, Xiao MB, Ni RZ, et al. Serum GP73 is complementary to AFP and GGT-II for the diagnosis of hepatocellular carcinoma. Oncol Lett. 2013;6:1152–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma J, Gao M, Lu Y, et al. Gain of 1q25-32, 12q23-24.3, and 17q12-22 facilitates tumorigenesis and progression of human squamous cell lung cancer. J Pathol. 2006;210:205–213.

    Article  CAS  PubMed  Google Scholar 

  20. Poniah P, Mohd Zain S, Abdul Razack AH, et al. Genome-wide copy number analysis reveals candidate gene loci that confer susceptibility to high-grade prostate cancer. Urol Oncol. 2017;35:545e1–545e11.

    Article  CAS  Google Scholar 

  21. Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  22. Catela Ivkovic T, Voss G, Cornella H, et al. microRNAs as cancer therapeutics: a step closer to clinical application. Cancer Lett. 2017;407:113–122.

    Article  CAS  PubMed  Google Scholar 

  23. Wong CC, Wong CM, Tung EK, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–331.

    Article  CAS  PubMed  Google Scholar 

  24. Hua S, Lei L, Deng L, et al. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene. 2018;37:1624–1636.

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Yu Y, Chen X, et al. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif. 2018;51:e12510.

    Article  CAS  PubMed  Google Scholar 

  26. Agosta C, Laugier J, Guyon L, et al. MiR-483-5p and miR-139-5p promote aggressiveness by targeting N-myc downstream-regulated gene family members in adrenocortical cancer. Int J Cancer. 2018;143:944–957.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Li C, Jiang Y, et al. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2018;18:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krstic J, Galhuber M, Schulz TJ, et al. p53 as a dichotomous regulator of liver disease: the dose makes the medicine. Int J Mol Sci. 2018;19:921.

    Article  CAS  PubMed Central  Google Scholar 

  29. Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer. 2017;16:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    Article  CAS  Google Scholar 

  31. Burkovics P, Dome L, Juhasz S, et al. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis. Nucl Acids Res. 2016;44:3176–3189.

    Article  CAS  PubMed  Google Scholar 

  32. Errico A, Deshmukh K, Tanaka Y, et al. Identification of substrates for cyclin dependent kinases. Adv Enzyme Regul. 2010;50:375–399.

    Article  PubMed  Google Scholar 

  33. Baugh EH, Ke H, Levine AJ, et al. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25:154–160.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Ding, Y., Liao, X. et al. Overexpression of PARPBP Correlates with Tumor Progression and Poor Prognosis in Hepatocellular Carcinoma. Dig Dis Sci 64, 2878–2892 (2019). https://doi.org/10.1007/s10620-019-05608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05608-4

Keywords

Navigation