Skip to main content

Advertisement

Log in

Mutation Detection of Fibroblast Growth Factor Receptor 3 for Infiltrative Hepatocellular Carcinoma by Whole-Exome Sequencing

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gene data on infiltrative hepatocellular carcinoma (iHCC) are still unknown.

Aims

This study aims to identify the gene expression signature of iHCC compared with single nodular (SN)-type HCC according to the gross classification.

Methods

The whole-exome sequencing was performed in six matched HCC tumor/normal pairs (three infiltrative type and three single nodular type) from six patients who received curative hepatectomy. Subsequent validation using Sanger sequencing and real-time PCR was performed in 30 HCC tumor samples (15 infiltrative type and 15 single nodular type).

Results

Following whole-exome sequencing, Sanger sequencing, and bioinformatics analysis, it revealed significant difference of iHCC from SN-type HCC in gene patterns. Particularly, a typical growth factor receptor tyrosine kinase FGFR3 was predominantly mutated in iHCC. One nonsynonymous variant c.G285T (p.Q95H) and five additional mutations (c.G938A:p.G313D, c.G1291A:p.A431T, c.C1355G:p.T452R, c.C1377T:p.L459L, and c.A1445T:p.E482V) were investigated by whole-exome and Sanger sequencing, respectively. Immunohistochemical studies confirmed the specific expression of FGFR3 in iHCC samples.

Conclusion

Our studies indicated that FGFR3 may be a candidate oncogene in tumor progression and a promising therapeutic target in iHCC patients who had early recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.

    Article  PubMed  Google Scholar 

  2. Yan X, Qiu Y. Impact of current staging systems on treatment strategy for HBV-related hepatocellular carcinoma. Cancer Lett. 2016;379:220–224.

    Article  CAS  PubMed  Google Scholar 

  3. Eggel H. Ueber das primare carcinoma der leber. Beitz Pathol Anat. 1901;30:506–604.

    Google Scholar 

  4. Kanai T, Hirohashi S, Upton MP, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer. 1987;60:810–819.

    Article  CAS  PubMed  Google Scholar 

  5. Hui AM, Takayama T, Sano K, et al. Predictive value of gross classification of hepatocellular carcinoma on recurrence and survival after hepatectomy. J Hepatol. 2000;33:975–979.

    Article  CAS  PubMed  Google Scholar 

  6. Shirabe K, Aishima S, Taketomi A, et al. Prognostic importance of the gross classification of hepatocellular carcinoma in living donor-related liver transplantation. Br J Surg. 2011;98:261–267.

    Article  CAS  PubMed  Google Scholar 

  7. Yopp AC, Mokdad A, Zhu H, et al. Infiltrative hepatocellular carcinoma: natural history and comparison with multifocal, nodular hepatocellular carcinoma. Ann Surg Oncol. 2015;22:S1075–S1082.

    Article  PubMed  Google Scholar 

  8. Kneuertz PJ, Demirjian A, Firoozmand A, et al. Diffuse infiltrative hepatocellular carcinoma: assessment of presentation, treatment, and outcomes. Ann Surg Oncol. 2012;19:2897–2907.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mehta N, Fidelman N, Sarkar M, Yao FY. Factors associated with outcomes and response to therapy in patients with infiltrative hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2013;11:572–578.

    Article  PubMed  PubMed Central  Google Scholar 

  10. He J, Shi J, Fu X, et al. The clinicopathologic and prognostic significance of gross classification on solitary hepatocellular carcinoma after hepatectomy. Medicine (Baltimore). 2015;94:e1331.

    Article  CAS  Google Scholar 

  11. Yamakado K, Nakatsuka A, Ohmori S, et al. Radiofrequency ablation combined with chemoembolization in hepatocellular carcinoma: treatment response based on tumor size and morphology. J Vasc Interv Radiol. 2002;13:1225–1232.

    Article  PubMed  Google Scholar 

  12. Nakamura H, Liu T, Hori S, et al. Response to transcatheter oily chemoembolization in hepatocellular carcinoma 3 cm or less: a study in 50 patients who underwent surgery. Hepatogastroenterology. 1993;40:6–9.

    CAS  PubMed  Google Scholar 

  13. Hashimoto T, Nakamura H, Hori S, et al. Hepatocellular carcinoma: efficacy of transcatheter oily chemoembolization in relation to macroscopic and microscopic patterns of tumor growth among 100 patients with partial hepatectomy. Cardiovasc Intervent Radiol. 1995;18:82–86.

    Article  CAS  PubMed  Google Scholar 

  14. Murakata A, Tanaka S, Mogushi K, et al. Gene expression signature of the gross morphology in hepatocellular carcinoma. Ann Surg. 2011;253:94–100.

    Article  PubMed  Google Scholar 

  15. Quetglas IM, Moeini A, Pinyol R, Llovet JM. Integration of genomic information in the clinical management of HCC. Best Pract Res Clin Gastroenterol. 2014;28:831–842.

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez SA. Novel biomarkers for hepatocellular carcinoma surveillance: has the future arrived? Hepatobiliary Surg Nutr. 2014;3:410–414.

    PubMed  PubMed Central  Google Scholar 

  17. Chatterjee R, Mitra A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol. 2015;24:335–345.

    Article  CAS  PubMed  Google Scholar 

  18. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  19. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–W311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aerts S, Lambrechts D, Maity S, et al. Gene prioritization through genomic data fusion. Nat Biotechnol. 2006;24:537–544.

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Yan X, Fu X, Deng M, et al. Infiltrative hepatocellular carcinoma: assessment of factors associated with outcomes in patients undergoing hepatectomy. Medicine (Baltimore). 2016;95:e3589.

    Article  CAS  Google Scholar 

  23. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–129.

    Article  CAS  PubMed  Google Scholar 

  24. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  PubMed  Google Scholar 

  25. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25:552–563.

    Article  CAS  PubMed  Google Scholar 

  26. Parish A, Schwaederle M, Daniels G, et al. Fibroblast growth factor family aberrations in cancers: clinical and molecular characteristics. Cell Cycle. 2015;14:2121–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nomura S, Yoshitomi H, Takano S, et al. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br J Cancer. 2008;99:305–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henriksson ML, Edin S, Dahlin AM, et al. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol. 2011;178:1387–1394.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gust KM, McConkey DJ, Awrey S, et al. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol Cancer Ther. 2013;12:1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gauglhofer C, Sagmeister S, Schrottmaier W, et al. Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology. 2011;53:854–864.

    Article  CAS  PubMed  Google Scholar 

  31. Qiu WH, Zhou BS, Chu PG, et al. Over-expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma. World J Gastroenterol. 2005;11:5266–5272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hagel M, Miduturu C, Sheets M, et al. First selective Small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015;5:424–437.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt B, Wei L, DePeralta DK, et al. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. Int J Cancer. 2016;138:1494–1505.

    Article  CAS  PubMed  Google Scholar 

  34. Paur J, Nika L, Maier C, et al. Fibroblast growth factor receptor 3 isoforms: novel therapeutic targets for hepatocellular carcinoma? Hepatology. 2015;62:1767–1778.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Jing X, Cheng X, et al. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation. Med Oncol. 2016;33:46.

    Article  CAS  PubMed  Google Scholar 

  36. Helsten T, Schwaederle M, Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 2015;34:479–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Milowsky MI, Dittrich C, Duran I, et al. Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. Eur J Cancer. 2014;50:3145–3152.

    Article  CAS  PubMed  Google Scholar 

  38. Tucker JA, Klein T, Breed J, et al. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure. 2014;22:1764–1774.

    Article  CAS  PubMed  Google Scholar 

  39. Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54:7066–7083.

    Article  CAS  PubMed  Google Scholar 

  40. Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437:199–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the whole multiple disciplinary team (MDT) for their help in this study. This work was supported by the National Natural Science Foundation of China (Grant No. 81470866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudong Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 102 kb)

Supplementary material 2 (XLS 593 kb)

Supplementary material 3 (DOC 73 kb)

Supplementary material 4 (XLS 56 kb)

Supplementary material 5 (XLS 28 kb)

10620_2016_4408_MOESM6_ESM.tif

Fig. S1. Mutations identified in iHCC. Somatic mutations confirmed only in iHCC by Sanger sequencing. The black arrows indicate the somatic mutation sites (TIFF 7339 kb)

10620_2016_4408_MOESM7_ESM.tif

Fig. S2. Mutations identified in iHCC. Five additional variants for FGFR3 gene were observed in iHCC samples. The red arrows indicate the mutation sites (TIFF 3259 kb)

Fig. S3. Disease network analysis by ToppGene (TIFF 2443 kb)

Fig. S4. Disease network analysis by Endeavour (TIFF 6358 kb)

Fig. S5. Results of CNV analyses. Amplified curve analysis of FGF4 (TIFF 3075 kb)

Fig. S6. Results of CNV analyses. Amplified curve analysis of FGF19 (TIFF 3377 kb)

Fig. S7. Results of CNV analyses. Amplified curve analysis of CCND1 (TIFF 3329 kb)

Fig. S8. Results of CNV analyses. Amplified curve analysis of GAPDH (TIFF 3503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Shao, C., Chen, C. et al. Mutation Detection of Fibroblast Growth Factor Receptor 3 for Infiltrative Hepatocellular Carcinoma by Whole-Exome Sequencing. Dig Dis Sci 62, 407–417 (2017). https://doi.org/10.1007/s10620-016-4408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4408-7

Keywords

Navigation