Skip to main content

Advertisement

Log in

SOX2 Inhibition Promotes Promoter Demethylation of CDX2 to Facilitate Gastric Intestinal Metaplasia

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastric intestinal metaplasia (IM) is regarded as a premalignant lesion, conferring risks for gastric cancer development. An intestinal transcription factor, CDX2, plays a vital role in establishing and maintaining IM. SOX2, an HMG-box transcription factor, is expressed in normal gastric mucosa and downregulated in IM. Therefore, it is important to elucidate the mutual interaction of SOX2 and CDX2 in gastric IM.

Aims

This study aims to evaluate the negative correlation between SOX2 and CDX2 in mRNA expression and promoter methylation and to illuminate the effect of SOX2 on the promoter methylation of CDX2.

Methods

Immunohistochemistry, real-time PCR and methylation-specific polymerase chain reaction assays were performed to evaluate the expression and promoter methylation of SOX2 and CDX2 in IM tissues from patients. SOX2 knockdown and CDX2 overexpression were performed in GES-1 cells to further clarify the relationship between SOX2 and CDX2.

Results

A negative correlation between SOX2 and CDX2 was found in 120 gastric IM specimens. Additionally, significant DNA demethylation of CDX2 promoter in clinical IM specimens was observed concomitantly with partial methylation of the SOX2 promoter. Furthermore, SOX2 knockdown in GES-1 cells triggered promoter demethylation of CDX2. Finally, the phenotype shift of gastric intestinal metaplasia in GES-1 cells, marked by MUC2 expression, was effectively induced by the combination of SOX2 RNAi and CDX2 overexpression.

Conclusions

Aberrant DNA methylation of SOX2 and CDX2 genes contributes to the development of IM. Notably, SOX2 may play a role in establishing and maintaining the methylation status of the CDX2 gene in gastric tissues and cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park YH, Kim N. Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J Cancer Prev. 2015;20:25–40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oh S, Kim N, Yoon H, et al. Risk factors of atrophic gastritis and intestinal metaplasia in first-degree relatives of gastric cancer patients compared with age-sex matched controls. J Cancer Prev. 2013;18:149–160.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sue S, Shibata W, Maeda S. Helicobacter pylori-induced signaling pathways contribute to intestinal metaplasia and gastric carcinogenesis. BioMed Res Int. 2015;2015:737621.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. Prog Mol Biol Transl Sci. 2010;96:231–270.

    Article  CAS  PubMed  Google Scholar 

  5. Reis CA, David L, Correa P, et al. Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression. Cancer Res. 1999;59:1003–1007.

    CAS  PubMed  Google Scholar 

  6. Barros R, Camilo V, Pereira B, et al. Pathophysiology of intestinal metaplasia of the stomach: emphasis on CDX2 regulation. Biochem Soc Trans. 2010;38:358–363.

    Article  CAS  PubMed  Google Scholar 

  7. Barros R, Freund JN, David L, et al. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med. 2012;18:555–563.

    Article  CAS  PubMed  Google Scholar 

  8. Silberg DG, Sullivan J, Kang E, et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology. 2002;122:689–696.

    Article  CAS  PubMed  Google Scholar 

  9. Mutoh H, Sakurai S, Satoh K, et al. Development of gastric carcinoma from intestinal metaplasia in Cdx2-transgenic mice. Cancer Res. 2004;64:7740–7747.

    Article  CAS  PubMed  Google Scholar 

  10. Camilo V, Garrido M, Valente P, et al. Differentiation reprogramming in gastric intestinal metaplasia and dysplasia: role of SOX2 and CDX2. Histopathology. 2015;66:343–350.

    Article  PubMed  Google Scholar 

  11. Tsukamoto T, Inada K, Tanaka H, et al. Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia. J Cancer Res Clin Oncol. 2004;130:135–145.

    Article  CAS  PubMed  Google Scholar 

  12. Shin CM, Kim N, Chang H, et al. Follow-up study on CDX1 and CDX2 mRNA expression in noncancerous gastric mucosae after Helicobacter pylori eradication. Dig Dis Sci. 2016;61:1051–1059.

    Article  CAS  PubMed  Google Scholar 

  13. Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–1181.

    Article  CAS  PubMed  Google Scholar 

  14. Li AS, Siu MK, Zhang H, et al. Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma. Reprod Sci. 2008;15:735–744.

    Article  CAS  PubMed  Google Scholar 

  15. Liu T, Zhang X, So CK, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–496.

    Article  CAS  PubMed  Google Scholar 

  16. Tatsugami M, Ito M, Tanaka S, et al. Bile acid promotes intestinal metaplasia and gastric carcinogenesis. Cancer Epidemiol Biomark Prev. 2012;21:2101–2107.

    Article  CAS  Google Scholar 

  17. Barros R, Pereira B, Duluc I, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008;215:411–420.

    Article  CAS  PubMed  Google Scholar 

  18. Lee IO, Kim JH, Choi YJ, et al. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 2010;285:16042–16050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto H, Bai YQ, Yuasa Y. Homeodomain protein CDX2 regulates goblet-specific MUC2 gene expression. Biochem Biophys Res Commun. 2003;300:813–818.

    Article  CAS  PubMed  Google Scholar 

  20. Benahmed F, Gross I, Gaunt SJ, et al. Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. Gastroenterology. 2008;135:1238–1247, 47e1-3.

  21. Sue S, Shibata W, Kameta E, et al. Intestine-specific homeobox (ISX) induces intestinal metaplasia and cell proliferation to contribute to gastric carcinogenesis. J Gastroenterol. 2016;51:949–960.

    Article  PubMed  Google Scholar 

  22. Cobler L, Pera M, Garrido M, et al. CDX2 can be regulated through the signalling pathways activated by IL-6 in gastric cells. Biochim Biophys Acta. 2014;1839:785–792.

    Article  CAS  PubMed  Google Scholar 

  23. Bleuming SA, Kodach LL, Garcia Leon MJ, et al. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach. J Pathol. 2006;209:190–197.

    Article  CAS  PubMed  Google Scholar 

  24. Barros R, Marcos N, Reis CA, et al. CDX2 expression is induced by Helicobacter pylori in AGS cells. Scand J Gastroenterol. 2009;44:124–125.

    Article  PubMed  Google Scholar 

  25. Yoon JH, Choi WS, Kim O, et al. NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget. 2015;6:28425–28439.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Asonuma S, Imatani A, Asano N, et al. Helicobacter pylori induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression. Am J Physiol Gastrointest Liver Physiol. 2009;297:G312–G322.

    Article  CAS  PubMed  Google Scholar 

  27. Tani Y, Akiyama Y, Fukamachi H, et al. Transcription factor SOX2 up-regulates stomach-specific pepsinogen A gene expression. J Cancer Res Clin Oncol. 2007;133:263–269.

    Article  CAS  PubMed  Google Scholar 

  28. Camilo V, Barros R, Sousa S, et al. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis. 2012;33:1985–1992.

    Article  CAS  PubMed  Google Scholar 

  29. Raghoebir L, Bakker ER, Mills JC, et al. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol. 2012;4:377–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mutoh H, Sashikawa M, Sugano K. Sox2 expression is maintained while gastric phenotype is completely lost in Cdx2-induced intestinal metaplastic mucosa. Differ Res Biol Divers. 2011;81:92–98.

    Article  CAS  Google Scholar 

  31. Zhang JF, Zhang JG, Kuai XL, et al. Reactivation of the homeotic tumor suppressor gene CDX2 by 5-aza-2′-deoxycytidine-induced demethylation inhibits cell proliferation and induces caspase-independent apoptosis in gastric cancer cells. Exp Ther Med. 2013;5:735–741.

    PubMed  PubMed Central  Google Scholar 

  32. Yuasa Y, Nagasaki H, Akiyama Y, et al. Relationship between CDX2 gene methylation and dietary factors in gastric cancer patients. Carcinogenesis. 2005;26:193–200.

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Bertoni H, Lal B, Michelson N, et al. Epigenetic modulation of a miR-296-5p: HMGA1 axis regulates Sox2 expression and glioblastoma stem cells. Oncogene. 2016;35:4903–4913.

    Article  CAS  PubMed  Google Scholar 

  34. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–995.

    Article  CAS  PubMed  Google Scholar 

  35. Niwa T, Tsukamoto T, Toyoda T, et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res. 2010;70:1430–1440.

    Article  CAS  PubMed  Google Scholar 

  36. Hur K, Niwa T, Toyoda T, et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation. Carcinogenesis. 2011;32:35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31470082) and the Natural Science Foundation of Inner Mongolia Autonomous Region (2014MS08119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingzhong Su.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Haijing Niu and Yuchen Jia have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Jia, Y., Li, T. et al. SOX2 Inhibition Promotes Promoter Demethylation of CDX2 to Facilitate Gastric Intestinal Metaplasia. Dig Dis Sci 62, 124–132 (2017). https://doi.org/10.1007/s10620-016-4361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4361-5

Keywords

Navigation