Skip to main content

Advertisement

Log in

Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Oxidative and nitrosative stresses can damage cellular membranes, disrupt mitochondrial function, alter gene expression, promote the apoptosis and necrosis of hepatocytes, and increase fibrosis in diverse acute and chronic liver diseases, including autoimmune hepatitis. The objectives of this review are to describe the mechanisms of oxidative and nitrosative stresses in inflammatory liver disease, indicate the pathogenic implications of these stresses in autoimmune hepatitis, and suggest investigational opportunities to develop interventions that counter them. The principal antioxidant defenses, including glutathione production, the activities of antioxidant enzymes, and the release of the nuclear factor erythroid 2-related factor 2, may be inadequate or suppressed by transforming growth factor beta. The generation of reactive oxygen species can intensify nitrosative stress, and this stress may not be adequately modulated by the thioredoxin–thioredoxin reductase system and induce post-translational modifications of proteins that further disrupt hepatocyte function. The unfolded protein response and autophagy may be unable to restore redox stability, meet metabolic demands, and maintain hepatocyte survival. Emerging interventions with highly selective site- and organelle-specific actions may improve outcomes, and they include inhibitors of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide synthase, and transforming growth factor beta. Pharmacological manipulation of nuclear transcription factors may favor expression of antioxidant genes, and stimulation of chaperone proteins within the endoplasmic reticulum and modulation of autophagy may prevent hepatic fibrosis and enhance cell survival. These interventions constitute investigational opportunities to improve the management of autoimmune hepatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galicia-Moreno M, Gutierrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex. 2014;79:135–144.

    CAS  PubMed  Google Scholar 

  2. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12:231–242.

    Article  PubMed  Google Scholar 

  3. Koek GH, Liedorp PR, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim Acta. 2011;412:1297–1305.

    Article  CAS  PubMed  Google Scholar 

  4. Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res. 2013;47:869–880.

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Baker SS, Baker RD, Zhu L. Antioxidant mechanisms in nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1301–1314.

    Article  CAS  PubMed  Google Scholar 

  6. Ciftci A, Yilmaz B, Koklu S, et al. Serum levels of nitrate, nitrite and advanced oxidation protein products (AOPP) in patients with nonalcoholic fatty liver disease. Acta Gastroenterol Belg. 2015;78:201–205.

    CAS  PubMed  Google Scholar 

  7. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290:G847–G851.

    Article  CAS  PubMed  Google Scholar 

  8. Choi J, Corder NL, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med. 2014;72:267–284.

    Article  CAS  PubMed  Google Scholar 

  9. Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 2009;16:3041–3053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuo K, Sasaki E, Higuchi S, et al. Involvement of oxidative stress and immune- and inflammation-related factors in azathioprine-induced liver injury. Toxicol Lett. 2014;224:215–224.

    Article  CAS  PubMed  Google Scholar 

  11. Grattagliano I, Calamita G, Cocco T, Wang DQ, Portincasa P. Pathogenic role of oxidative and nitrosative stress in primary biliary cirrhosis. World J Gastroenterol. 2014;20:5746–5759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanz-Cameno P, Medina J, Garcia-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune hepatitis. J Hepatol. 2002;37:723–729.

    Article  CAS  PubMed  Google Scholar 

  13. Pemberton PW, Aboutwerat A, Smith A, et al. Oxidant stress in type I autoimmune hepatitis: the link between necroinflammation and fibrogenesis? Biochim Biophys Acta. 2004;1689:182–189.

    Article  CAS  PubMed  Google Scholar 

  14. Beyazit Y, Kocak E, Tanoglu A, Kekilli M. Oxidative stress might play a role in low serum vitamin D associated liver fibrosis among patients with autoimmune hepatitis. Dig Dis Sci. 2015;60:1106–1108. doi:10.1007/s10620-015-3526-y.

    Article  PubMed  Google Scholar 

  15. Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: impact of TGFbeta1 on ROS generators, mediators and functional consequences. Redox Biol. 2015;6:344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Minicis S, Brenner DA. NOX in liver fibrosis. Arch Biochem Biophys. 2007;462:266–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Paik YH, Kim J, Aoyama T, et al. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui W, Matsuno K, Iwata K, et al. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology. 2011;54:949–958.

    Article  CAS  PubMed  Google Scholar 

  19. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2:326–332.

    Article  CAS  PubMed  Google Scholar 

  20. Hernandez-Gea V, Hilscher M, Rozenfeld R, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol. 2013;59:98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta. 2013;1832:940–947.

    Article  CAS  PubMed  Google Scholar 

  22. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8:e54059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266:4244–4250.

    CAS  PubMed  Google Scholar 

  24. Calcerrada P, Peluffo G, Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des. 2011;17:3905–3932.

    Article  CAS  PubMed  Google Scholar 

  25. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chambel SS, Santos-Goncalves A, Duarte TL. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism. Biomed Res Int. 2015;2015:597134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hiura M, Honma Y, Miyagawa K, et al. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res. 2015;45:1124–1135.

    Article  CAS  PubMed  Google Scholar 

  29. Szeto HH. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 2006;8:E277–E283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–656.

    Article  CAS  PubMed  Google Scholar 

  31. Skulachev VP, Antonenko YN, Cherepanov DA, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta. 2010;1797:878–889.

    Article  CAS  PubMed  Google Scholar 

  32. Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol. 2012;682:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esrefoglu M. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon. 2012;12:160–167.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:14205–14218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Investig. 2000;106:867–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wheeler MD, Kono H, Yin M, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31:1544–1549.

    Article  CAS  PubMed  Google Scholar 

  37. Hikita H, Kodama T, Tanaka S, et al. Activation of the mitochondrial apoptotic pathway produces reactive oxygen species and oxidative damage in hepatocytes that contribute to liver tumorigenesis. Cancer Prev Res (Phila). 2015;8:693–701.

    Article  CAS  Google Scholar 

  38. Alba G, Reyes ME, Santa-Maria C, et al. Transcription of liver X receptor is down-regulated by 15-deoxy-Delta(12,14)-prostaglandin J(2) through oxidative stress in human neutrophils. PLoS One. 2012;7:e42195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reyes-Quiroz ME, Alba G, Santa-Maria C, et al. Platelet-activating factor downregulates the expression of liver X receptor-alpha and its target genes in human neutrophils. FEBS J. 2014;281:970–982.

    Article  CAS  PubMed  Google Scholar 

  40. Tian J, Feng Y, Fu H, et al. The aryl hydrocarbon receptor: a key bridging molecule of external and internal chemical signals. Environ Sci Technol. 2015;49:9518–9531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pascual-Garcia M, Valledor AF. Biological roles of liver X receptors in immune cells. Arch Immunol Ther Exp (Warsz). 2012;60:235–249.

    Article  CAS  Google Scholar 

  42. Glass CK, Ogawa S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol. 2006;6:44–55.

    Article  CAS  PubMed  Google Scholar 

  43. Ghisletti S, Huang W, Jepsen K, et al. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev. 2009;23:681–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong H, He J, Lee JH, et al. Activation of the liver X receptor prevents lipopolysaccharide-induced lung injury. J Biol Chem. 2009;284:30113–30121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–561.

    Article  CAS  PubMed  Google Scholar 

  46. Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453:106–109.

    Article  CAS  PubMed  Google Scholar 

  47. Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453:65–71.

    Article  CAS  PubMed  Google Scholar 

  48. Rohlman D, Pham D, Yu Z, Steppan LB, Kerkvliet NI. Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4(+) T-cell differentiation. Front Immunol. 2012;3:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pierre S, Chevallier A, Teixeira-Clerc F, et al. Aryl hydrocarbon receptor–dependent induction of liver fibrosis by dioxin. Toxicol Sci. 2014;137:114–124.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28:1456–1462.

    Article  CAS  PubMed  Google Scholar 

  52. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  53. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–295.

    Article  CAS  PubMed  Google Scholar 

  54. Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65:2493–2506.

    Article  CAS  PubMed  Google Scholar 

  55. Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta. 2009;1788:2080–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal. 2014;20:1925–1953.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis. Apoptosis. 2007;12:877–885.

    Article  CAS  PubMed  Google Scholar 

  58. Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292:C33–C44.

    Article  CAS  PubMed  Google Scholar 

  59. Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res. 2012;46:1313–1326.

    Article  CAS  PubMed  Google Scholar 

  60. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1837:408–417.

    Article  CAS  PubMed  Google Scholar 

  61. Samoylenko A, Hossain JA, Mennerich D, et al. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal. 2013;19:2157–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med. 2009;47:1239–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crestani B, Besnard V, Boczkowski J. Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1086–1089.

    Article  CAS  PubMed  Google Scholar 

  64. Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology. 2011;53:1730–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bettaieb A, Jiang JX, Sasaki Y, et al. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology. 2015;149:468–480. (e410).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arsalane K, Dubois CM, Muanza T, et al. Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol. 1997;17:599–607.

    Article  CAS  PubMed  Google Scholar 

  67. Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006;290:L661–L673.

    Article  CAS  PubMed  Google Scholar 

  68. Carmona-Cuenca I, Roncero C, Sancho P, et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol. 2008;49:965–976.

    Article  CAS  PubMed  Google Scholar 

  69. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med. 2012;53:1489–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verslype C, George C, Buchel E, et al. Diagnosis and treatment of autoimmune hepatitis at age 65 and older. Aliment Pharmacol Ther. 2005;21:695–699.

    Article  CAS  PubMed  Google Scholar 

  71. Czaja AJ, Carpenter HA. Distinctive clinical phenotype and treatment outcome of type 1 autoimmune hepatitis in the elderly. Hepatology. 2006;43:532–538.

    Article  PubMed  Google Scholar 

  72. Miyake Y, Iwasaki Y, Takaki A, et al. Clinical features of Japanese elderly patients with type 1 autoimmune hepatitis. Intern Med. 2007;46:1945–1949.

    Article  PubMed  Google Scholar 

  73. Czaja AJ. Clinical features, differential diagnosis and treatment of autoimmune hepatitis in the elderly. Drugs Aging. 2008;25:219–239.

    Article  CAS  PubMed  Google Scholar 

  74. Thannickal VJ. Aging, antagonistic pleiotropy and fibrotic disease. Int J Biochem Cell Biol. 2010;42:1398–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6:231ra247. doi:10.1126/scitranslmed.3008182.

    Article  CAS  Google Scholar 

  76. Jarman ER, Khambata VS, Cope C, et al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol. 2014;50:158–169.

    PubMed  Google Scholar 

  77. Jiang JX, Chen X, Serizawa N, et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med. 2012;53:289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058–17062.

    Article  CAS  PubMed  Google Scholar 

  79. Proell V, Carmona-Cuenca I, Murillo MM, et al. TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol. 2007;6:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kayanoki Y, Fujii J, Suzuki K, et al. Suppression of antioxidative enzyme expression by transforming growth factor-beta 1 in rat hepatocytes. J Biol Chem. 1994;269:15488–15492.

    CAS  PubMed  Google Scholar 

  81. Islam KN, Kayanoki Y, Kaneto H, et al. TGF-beta1 triggers oxidative modifications and enhances apoptosis in HIT cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase. Free Radic Biol Med. 1997;22:1007–1017.

    Article  CAS  PubMed  Google Scholar 

  82. Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF. TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2011;300:L295–L304.

    Article  CAS  PubMed  Google Scholar 

  83. Jobling MF, Mott JD, Finnegan MT, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. 2006;166:839–848.

    Article  CAS  PubMed  Google Scholar 

  84. Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 2006;17:19–27.

    Article  CAS  PubMed  Google Scholar 

  85. Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ. NADPH oxidases in lung health and disease. Antioxid Redox Signal. 2014;20:2838–2853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50:829–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hecker L, Vittal R, Jones T, et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15:1077–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grattagliano I, Portincasa P, Cocco T, et al. Effect of dietary restriction and N-acetylcysteine supplementation on intestinal mucosa and liver mitochondrial redox status and function in aged rats. Exp Gerontol. 2004;39:1323–1332.

    Article  CAS  PubMed  Google Scholar 

  89. Valencia AP, Schappal AE, Matthew Morris E, et al. The presence of the ovary prevents hepatic mitochondrial oxidative stress in young and aged female mice through glutathione peroxidase 1. Exp Gerontol. 2016;73:14–22.

    Article  CAS  PubMed  Google Scholar 

  90. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–789.

    Article  PubMed  CAS  Google Scholar 

  91. Selman M, Rojas M, Mora AL, Pardo A. Aging and interstitial lung diseases: unraveling an old forgotten player in the pathogenesis of lung fibrosis. Semin Respir Crit Care Med. 2010;31:607–617.

    Article  PubMed  Google Scholar 

  92. Castriotta RJ, Eldadah BA, Foster WM, et al. Workshop on idiopathic pulmonary fibrosis in older adults. Chest. 2010;138:693–703.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67:1–18.

    CAS  PubMed  Google Scholar 

  94. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med. 2003;34:1–10.

    Article  CAS  PubMed  Google Scholar 

  96. Loguercio C, Di Pierro M. The role of glutathione in the gastrointestinal tract: a review. Ital J Gastroenterol Hepatol. 1999;31:401–407.

    CAS  PubMed  Google Scholar 

  97. Winterbourn CC, Metodiewa D. The reaction of superoxide with reduced glutathione. Arch Biochem Biophys. 1994;314:284–290.

    Article  CAS  PubMed  Google Scholar 

  98. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4:278–286.

    Article  CAS  PubMed  Google Scholar 

  99. Amores-Sanchez MI, Medina MA. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab. 1999;67:100–105.

    Article  CAS  PubMed  Google Scholar 

  100. Ramani K, Tomasi ML, Yang H, Ko K, Lu SC. Mechanism and significance of changes in glutamate–cysteine ligase expression during hepatic fibrogenesis. J Biol Chem. 2012;287:36341–36355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alvarez JA, Chowdhury R, Jones DP, et al. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin Endocrinol (Oxf). 2014;81:458–466.

    Article  CAS  Google Scholar 

  103. Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA. 2004;101:3381–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shih PH, Yen GC. Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology. 2007;8:71–80.

    Article  CAS  PubMed  Google Scholar 

  105. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barbaro G, Di Lorenzo G, Ribersani M, et al. Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype. J Hepatol. 1999;30:774–782.

    Article  CAS  PubMed  Google Scholar 

  107. Petta S, Camma C, Scazzone C, et al. Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 2010;51:1158–1167.

    Article  CAS  PubMed  Google Scholar 

  108. Farnik H, Bojunga J, Berger A, et al. Low vitamin D serum concentration is associated with high levels of hepatitis B virus replication in chronically infected patients. Hepatology. 2013;58:1270–1276.

    Article  CAS  PubMed  Google Scholar 

  109. Trepo E, Ouziel R, Pradat P, et al. Marked 25-hydroxyvitamin D deficiency is associated with poor prognosis in patients with alcoholic liver disease. J Hepatol. 2013;59:344–350.

    Article  CAS  PubMed  Google Scholar 

  110. Smyk DS, Orfanidou T, Invernizzi P, Bogdanos DP, Lenzi M. Vitamin D in autoimmune liver disease. Clin Res Hepatol Gastroenterol. 2013;37:535–545.

    Article  CAS  PubMed  Google Scholar 

  111. Dasarathy J, Periyalwar P, Allampati S, et al. Hypovitaminosis D is associated with increased whole body fat mass and greater severity of non-alcoholic fatty liver disease. Liver Int. 2014;34:e118–e127.

    Article  CAS  PubMed  Google Scholar 

  112. Efe C, Kav T, Aydin C, et al. Low serum vitamin D levels are associated with severe histological features and poor response to therapy in patients with autoimmune hepatitis. Dig Dis Sci. 2014;59:3035–3042. doi:10.1007/s10620-014-3267-3.

    Article  CAS  PubMed  Google Scholar 

  113. Wong GL, Chan HL, Chan HY, et al. Adverse effects of vitamin D deficiency on outcomes of patients with chronic hepatitis B. Clin Gastroenterol Hepatol. 2015;13:783–790.

    Article  CAS  PubMed  Google Scholar 

  114. Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31:109–139.

    Article  CAS  PubMed  Google Scholar 

  115. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  PubMed  Google Scholar 

  116. Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol. 2014;6:19–34.

    PubMed  PubMed Central  Google Scholar 

  117. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–260.

    Article  CAS  PubMed  Google Scholar 

  118. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690:12–23.

    Article  CAS  PubMed  Google Scholar 

  119. Pedruzzi LM, Stockler-Pinto MB, Leite M Jr, Mafra D. Nrf2-keap1 system versus NF-kappaB: the good and the evil in chronic kidney disease? Biochimie. 2012;94:2461–2466.

    Article  CAS  PubMed  Google Scholar 

  120. Buelna-Chontal M, Zazueta C. Redox activation of Nrf2 & NF-kappaB: a double end sword? Cell Signal. 2013;25:2548–2557.

    Article  CAS  PubMed  Google Scholar 

  121. Artaud-Macari E, Goven D, Brayer S, et al. Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2013;18:66–79.

    Article  CAS  PubMed  Google Scholar 

  122. Oh CJ, Kim JY, Min AK, et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling. Free Radic Biol Med. 2012;52:671–682.

    Article  CAS  PubMed  Google Scholar 

  123. Nezis IP, Stenmark H. p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal. 2012;17:786–793.

    Article  CAS  PubMed  Google Scholar 

  124. Jain A, Lamark T, Sjottem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–22591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tong KI, Kobayashi A, Katsuoka F, Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 2006;387:1311–1320.

    Article  CAS  PubMed  Google Scholar 

  126. Itoh K, Chiba T, Takahashi S, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–322.

    Article  CAS  PubMed  Google Scholar 

  127. Kansanen E, Jyrkkanen HK, Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med. 2012;52:973–982.

    Article  CAS  PubMed  Google Scholar 

  128. Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34:340–346.

    Article  CAS  PubMed  Google Scholar 

  129. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2—an update. Free Radic Biol Med. 2014;66:36–44.

    Article  CAS  PubMed  Google Scholar 

  130. Chowdhry S, Nazmy MH, Meakin PJ, et al. Loss of Nrf2 markedly exacerbates nonalcoholic steatohepatitis. Free Radic Biol Med. 2010;48:357–371.

    Article  CAS  PubMed  Google Scholar 

  131. Sugimoto H, Okada K, Shoda J, et al. Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G283–G294.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang YK, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol. 2010;245:326–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shimozono R, Asaoka Y, Yoshizawa Y, et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol. 2013;84:62–70.

    Article  CAS  PubMed  Google Scholar 

  134. Jiang T, Tian F, Zheng H, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney Int. 2014;85:333–343.

    Article  CAS  PubMed  Google Scholar 

  135. Li B, Cui W, Liu J, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239–249.

    Article  CAS  PubMed  Google Scholar 

  136. Song BJ, Akbar M, Abdelmegeed MA, et al. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol. 2014;3:109–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver diseases. Oxid Med Cell Longev. 2014;2014:149627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med. 1998;25:392–403.

    Article  CAS  PubMed  Google Scholar 

  139. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268:L699–L722.

    CAS  PubMed  Google Scholar 

  140. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38:831–838.

    Article  CAS  PubMed  Google Scholar 

  142. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31:1287–1312.

    Article  CAS  PubMed  Google Scholar 

  143. Mohiuddin I, Chai H, Lin PH, et al. Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133:143–149.

    Article  CAS  PubMed  Google Scholar 

  144. Albillos A, Rossi I, Cacho G, et al. Enhanced endothelium-dependent vasodilation in patients with cirrhosis. Am J Physiol. 1995;268:G459–G464.

    CAS  PubMed  Google Scholar 

  145. Beyazit Y, Efe C, Tanoglu A, et al. Nitric oxide is a potential mediator of hepatic inflammation and fibrogenesis in autoimmune hepatitis. Scand J Gastroenterol. 2015;50:204–210.

    Article  CAS  PubMed  Google Scholar 

  146. Pacher P, Obrosova IG, Mabley JG, Szabo C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem. 2005;12:267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303:468–475.

    Article  CAS  PubMed  Google Scholar 

  148. Mani AR, Ippolito S, Ollosson R, Moore KP. Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology. 2006;43:847–856.

    Article  CAS  PubMed  Google Scholar 

  149. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267:6102–6109.

    Article  CAS  PubMed  Google Scholar 

  150. Grattagliano I, Portincasa P, Palmieri VO, Palasciano G. Mutual changes of thioredoxin and nitrosothiols during biliary cirrhosis: results from humans and cholestatic rats. Hepatology. 2007;45:331–339.

    Article  CAS  PubMed  Google Scholar 

  151. Bertini R, Howard OM, Dong HF, et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J Exp Med. 1999;189:1783–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997;15:351–369.

    Article  CAS  PubMed  Google Scholar 

  153. Cebula M, Schmidt EE, Arner ES. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal. 2015;23:823–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem. 1996;271:19180–19185.

    Article  CAS  PubMed  Google Scholar 

  155. Sumida Y, Nakashima T, Yoh T, et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol. 2003;38:32–38.

    Article  CAS  PubMed  Google Scholar 

  156. Zhou J, Eleni C, Spyrou G, Brune B. The mitochondrial thioredoxin system regulates nitric oxide-induced HIF-1alpha protein. Free Radic Biol Med. 2008;44:91–98.

    Article  CAS  PubMed  Google Scholar 

  157. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem. 2002;277:33249–33257.

    Article  CAS  PubMed  Google Scholar 

  158. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER–mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131:596–610.

    Article  CAS  PubMed  Google Scholar 

  159. Cullinan SB, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23:7198–7209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8:1391–1418.

    Article  PubMed  Google Scholar 

  162. Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther. 2009;124:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012;23:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology. 2016;150:328–339.

    Article  CAS  PubMed  Google Scholar 

  167. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–2873.

    Article  CAS  PubMed  Google Scholar 

  169. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Neufeld TP. TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol. 2010;22:157–168.

    Article  CAS  PubMed  Google Scholar 

  171. Klionsky DJ, Cregg JM, Dunn WA Jr, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–545.

    Article  CAS  PubMed  Google Scholar 

  172. Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr. 2007;27:19–40.

    Article  CAS  PubMed  Google Scholar 

  173. Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007;3:331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007;104:19023–19028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142:938–946.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hernandez-Gea V, Friedman SL. Autophagy fuels tissue fibrogenesis. Autophagy. 2012;8:849–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Investig. 2007;117:326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li J, Hou N, Faried A, Tsutsumi S, Kuwano H. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer. 2010;46:1900–1909.

    Article  CAS  PubMed  Google Scholar 

  179. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.

    Article  CAS  PubMed  Google Scholar 

  181. Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.

    Article  PubMed  Google Scholar 

  182. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904. doi:10.1007/s10620-014-3284-2.

    Article  CAS  PubMed  Google Scholar 

  183. Czaja AJ, Carpenter HA. Progressive fibrosis during corticosteroid therapy of autoimmune hepatitis. Hepatology. 2004;39:1631–1638.

    Article  PubMed  Google Scholar 

  184. Moreno-Otero R. May oxidative stress contribute to autoimmune hepatitis pathogenesis, and can antioxidants be of value as adjuvant therapy for refractory patients? Dig Dis Sci. 2013;58:1440–1441. doi:10.1007/s10620-013-2622-0.

    Article  PubMed  Google Scholar 

  185. Czaja AJ. Reply: to Moreno-Otero R. May oxidative stress contribute to autoimune hepatitis pathogenesis, and can antioxidants be of value as adjuvant therapy for refractory patients? Dig Dis Sci. 2013;58:1441–1442. doi:10.1007/s10620-013-2622-0.

    PubMed  Google Scholar 

  186. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–857.

    Article  CAS  PubMed  Google Scholar 

  187. Bjelakovic G, Gluud LL, Nikolova D, et al. Meta-analysis: antioxidant supplements for liver diseases—the Cochrane Hepato-Biliary Group. Aliment Pharmacol Ther. 2010;32:356–367.

    Article  CAS  PubMed  Google Scholar 

  188. Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013;310:1178–1179.

    Article  CAS  PubMed  Google Scholar 

  189. Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. 2013;8:e74558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17:40–44.

    CAS  PubMed  Google Scholar 

  191. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2003;98:2485–2490.

    Article  CAS  PubMed  Google Scholar 

  192. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ferenci P. Silymarin in the treatment of liver diseases: what is the clinical evidence? Clin Liver Dis. 2016;7:8–10.

    Article  Google Scholar 

  194. Jia JD, Bauer M, Cho JJ, et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen alpha1(I) and TIMP-1. J Hepatol. 2001;35:392–398.

    Article  CAS  PubMed  Google Scholar 

  195. Boigk G, Stroedter L, Herbst H, et al. Silymarin retards collagen accumulation in early and advanced biliary fibrosis secondary to complete bile duct obliteration in rats. Hepatology. 1997;26:643–649.

    Article  CAS  PubMed  Google Scholar 

  196. Dehmlow C, Erhard J, de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology. 1996;23:749–754.

    Article  CAS  PubMed  Google Scholar 

  197. Polyak SJ, Morishima C, Shuhart MC, et al. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology. 2007;132:1925–1936.

    Article  CAS  PubMed  Google Scholar 

  198. Polyak SJ, Morishima C, Lohmann V, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci USA. 2010;107:5995–5999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol. 1989;9:105–113.

    Article  CAS  PubMed  Google Scholar 

  200. Loguercio C, Andreone P, Brisc C, et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med. 2012;52:1658–1665.

    Article  CAS  PubMed  Google Scholar 

  201. Lucena MI, Andrade RJ, de la Cruz JP, et al. Effects of silymarin MZ-80 on oxidative stress in patients with alcoholic cirrhosis. Results of a randomized, double-blind, placebo-controlled clinical study. Int J Clin Pharmacol Ther. 2002;40:2–8.

    Article  CAS  PubMed  Google Scholar 

  202. Pares A, Planas R, Torres M, et al. Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol. 1998;28:615–621.

    Article  CAS  PubMed  Google Scholar 

  203. Ronis MJ, Butura A, Sampey BP, et al. Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition. Free Radic Biol Med. 2005;39:619–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Baumgardner JN, Shankar K, Hennings L, et al. N-acetylcysteine attenuates progression of liver pathology in a rat model of nonalcoholic steatohepatitis. J Nutr. 2008;138:1872–1879.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ. 1991;303:1026–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Phillips M, Curtis H, Portmann B, et al. Antioxidants versus corticosteroids in the treatment of severe alcoholic hepatitis—a randomised clinical trial. J Hepatol. 2006;44:784–790.

    Article  CAS  PubMed  Google Scholar 

  207. Stewart S, Prince M, Bassendine M, et al. A randomized trial of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J Hepatol. 2007;47:277–283.

    Article  CAS  PubMed  Google Scholar 

  208. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–199.

    Article  CAS  PubMed  Google Scholar 

  209. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, et al. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr. 2016;103:579–588.

    Article  CAS  Google Scholar 

  210. Choi HK, Pokharel YR, Lim SC, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol. 2009;240:377–384.

    Article  CAS  PubMed  Google Scholar 

  211. Lonnrot K, Holm P, Lagerstedt A, Huhtala H, Alho H. The effects of lifelong ubiquinone Q10 supplementation on the Q9 and Q10 tissue concentrations and life span of male rats and mice. Biochem Mol Biol Int. 1998;44:727–737.

    CAS  PubMed  Google Scholar 

  212. Sohet FM, Neyrinck AM, Pachikian BD, et al. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009;78:1391–1400.

    Article  CAS  PubMed  Google Scholar 

  213. Farhangi MA, Alipour B, Jafarvand E, Khoshbaten M. Oral coenzyme Q10 supplementation in patients with nonalcoholic fatty liver disease: effects on serum vaspin, chemerin, pentraxin 3, insulin resistance and oxidative stress. Arch Med Res. 2014;45:589–595.

    Article  CAS  PubMed  Google Scholar 

  214. Sanoobar M, Eghtesadi S, Azimi A, et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci. 2015;18:169–176.

    Article  CAS  PubMed  Google Scholar 

  215. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–740.

    Article  CAS  PubMed  Google Scholar 

  216. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–2810.

    Article  CAS  PubMed  Google Scholar 

  217. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–471.

    Article  CAS  PubMed  Google Scholar 

  218. Laping NJ, Grygielko E, Mathur A, et al. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol. 2002;62:58–64.

    Article  CAS  PubMed  Google Scholar 

  219. Stuehr DJ. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999;1411:217–230.

    Article  CAS  PubMed  Google Scholar 

  220. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Weinberg JB, Chen Y, Jiang N, et al. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med. 2009;46:1626–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Vitecek J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediat Inflamm. 2012;2012:318087.

    Article  CAS  Google Scholar 

  223. Pfeiffer S, Leopold E, Schmidt K, Brunner F, Mayer B. Inhibition of nitric oxide synthesis by NG-nitro-l-arginine methyl ester (l-NAME): requirement for bioactivation to the free acid, NG-nitro-l-arginine. Br J Pharmacol. 1996;118:1433–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Babu BR, Griffith OW. Design of isoform-selective inhibitors of nitric oxide synthase. Curr Opin Chem Biol. 1998;2:491–500.

    Article  CAS  PubMed  Google Scholar 

  225. Tinker AC, Wallace AV. Selective inhibitors of inducible nitric oxide synthase: potential agents for the treatment of inflammatory diseases? Curr Top Med Chem. 2006;6:77–92.

    Article  CAS  PubMed  Google Scholar 

  226. Garcin ED, Arvai AS, Rosenfeld RJ, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 2008;4:700–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ji H, Li H, Martasek P, et al. Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J Med Chem. 2009;52:779–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Iida K, Itoh K, Kumagai Y, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004;64:6424–6431.

    Article  CAS  PubMed  Google Scholar 

  229. Brooks SC 3rd, Brooks JS, Lee WH, Lee MG, Kim SG. Therapeutic potential of dithiolethiones for hepatic diseases. Pharmacol Ther. 2009;124:31–43.

    Article  CAS  PubMed  Google Scholar 

  230. Kang KW, Kim YG, Cho MK, et al. Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J. 2002;16:1988–1990.

    CAS  PubMed  Google Scholar 

  231. Velayutham M, Villamena FA, Fishbein JC, Zweier JL. Cancer chemopreventive oltipraz generates superoxide anion radical. Arch Biochem Biophys. 2005;435:83–88.

    Article  CAS  PubMed  Google Scholar 

  232. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.

    Article  CAS  PubMed  Google Scholar 

  233. Czaja AJ. Review article: prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385–406.

    Article  CAS  PubMed  Google Scholar 

  234. Czock D, Keller F, Rasche FM, Haussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.

    Article  CAS  PubMed  Google Scholar 

  235. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev. 2004;104:3947–3980.

    Article  CAS  PubMed  Google Scholar 

  236. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3:561–597.

    Article  CAS  PubMed  Google Scholar 

  237. Okuyama H, Nakamura H, Shimahara Y, et al. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol. 2005;42:117–123.

    Article  CAS  PubMed  Google Scholar 

  238. Rigobello MP, Callegaro MT, Barzon E, Benetti M, Bindoli A. Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic Biol Med. 1998;24:370–376.

    Article  CAS  PubMed  Google Scholar 

  239. Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. 2004;165:347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441:523–540.

    Article  CAS  PubMed  Google Scholar 

  241. Hoyer-Hansen M, Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007;14:1576–1582.

    Article  CAS  PubMed  Google Scholar 

  242. Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–4710.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution

Albert J. Czaja, MD researched, designed, and wrote this article. The tables are original, constructed by Dr. Czaja, fully referenced, and developed solely for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Ethics declarations

Conflict of interest

This review did not receive financial support from a funding agency or institution, and Albert J. Czaja, MD has no conflict of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, A.J. Nature and Implications of Oxidative and Nitrosative Stresses in Autoimmune Hepatitis. Dig Dis Sci 61, 2784–2803 (2016). https://doi.org/10.1007/s10620-016-4247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4247-6

Keywords

Navigation