Skip to main content

Advertisement

Log in

Role of Nrf2 Dysfunction in Uremia-Associated Intestinal Inflammation and Epithelial Barrier Disruption

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gut inflammation is prevalent in chronic kidney disease (CKD) and likely contributes to systemic inflammation via disruption of the epithelial tight junction with subsequent endotoxin and bacterial translocation.

Aims

To study the expression profile of inflammatory and tight junction proteins in the colon from CKD rats compared to healthy controls, and demonstrate the role of Nrf2 (transcription factor nuclear factor erythroid 2-related factor 2) using a potent Nrf2 activator.

Methods

CKD was induced via 5/6 nephrectomy in Sprague–Dawley rats, and dh404 (2 mg/kg/day) was used to study the effects of systemic Nrf2 activation. The experimental groups included sham, CKD and CKD+ dh404 rats. Blood and colon tissues were analyzed after a 10-week study period.

Results

Colon from CKD rats showed histological evidence of colitis, depletion of epithelial tight junction proteins, significant reduction of Nrf2 and its measured target gene products (NQO1, catalase, and CuZn SOD), activation of NFkB, and upregulation of pro-inflammatory molecules (COX-2, MCP-1, iNOS, and gp91phox). Treatment with dh404 attenuated colonic inflammation, restored Nrf2 activity and levels of NQO1, catalase and CuZn SOD, decreased NFkB and lowered expression of COX-2, MCP-1, iNOS, and gp91phox. This was associated with restoration of colonic epithelial tight junction proteins (occludin and claudin-1).

Conclusions

CKD rats exhibited colitis, disruption of colonic epithelial tight junction, activation of inflammatory mediators, and impairment of Nrf2 pathway. Treatment with an Nrf2 activator restored Nrf2 activity, attenuated colonic inflammation, and restored epithelial tight junction proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sandek A, Rauchhaus M, Anker SD, von Haehling S. The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care. 2008;11:632–639.

    Article  PubMed  Google Scholar 

  2. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7:691–701.

    Article  PubMed  Google Scholar 

  3. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.

    Article  CAS  PubMed  Google Scholar 

  4. Vaziri ND, Dure-Smith B, Miller R, Mirahmadi MK. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol. 1985;80:608–611.

    CAS  PubMed  Google Scholar 

  5. Vaziri ND, Yuan J, Rahimi A, Ni Z, Said H, Subramanian VS. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant. 2012;27:2686–2693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol. 2013;38:99–103.

    Article  CAS  PubMed  Google Scholar 

  7. Vaziri ND, Yuan J, Khazaeli M, Masuda Y, Ichii H, Liu S. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption. Am J Nephrol. 2013;37:518–525.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vaziri ND, Goshtasbi N, Yuan J, et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36:438–443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37:1–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:G851–G857.

    CAS  PubMed  Google Scholar 

  11. Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci. 2009;14:2765–2778.

    Article  CAS  Google Scholar 

  12. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol. 2006;290:G577–G582.

    Article  CAS  PubMed  Google Scholar 

  13. Gonçalves S, Pecoits-Filho R, Perreto S, et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant. 2006;21:2788–2794.

    Article  PubMed  Google Scholar 

  14. Szeto CC, Kwan BC, Chow KM, et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2008;3:431–436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Shi K, Wang F, Jiang H, et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci. 2014;59:2109–2117.

  16. Vaziri ND. Gut microbial translocation in the pathogenesis of systemic inflammation in patients with end-stage renal disease. Dig Dis Sci. 2014;59:2020–2022.

  17. Kimmel PL, Phillips TM, Simmens SJ, et al. Immunologic function and survival in hemodialysis patients. Kidney Int. 1998;54:236–244.

    Article  CAS  PubMed  Google Scholar 

  18. Kalantar-Zadeh K, Kopple JD, Humphreys MH, Block G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1507–1519.

    Article  CAS  PubMed  Google Scholar 

  19. Raj DS, Shah VO, Rambod M, Kovesdy CP, Kalantar-Zadeh K. Association of soluble endotoxin receptor CD14 and mortality among patients undergoing hemodialysis. Am J Kidney Dis. 2009;54:1062–1071.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–1538.

    Article  CAS  PubMed  Google Scholar 

  21. Kalantar-Zadeh K, Block G, McAllister CJ, Humphreys MH, Kopple JD. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80:299–307.

    CAS  PubMed  Google Scholar 

  22. Vaziri ND. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol. 2004;24:469–473.

    Article  CAS  PubMed  Google Scholar 

  23. Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315.

    Article  PubMed  Google Scholar 

  24. Wong J, Piceno YM, Desantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bourke E, Milne MD, Stokes GS. Caecal pH and ammonia in experimental uraemia. Gut. 1966;7:558–561.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Swales JD, Tange JD, Evans DJ. Intestinal ammonia in uraemia: the effect of a urease inhibitor, acetohydroxamic acid. Clin Sci. 1972;42:105–112.

    CAS  PubMed  Google Scholar 

  27. Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000;275:16023–16029.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett. 2005;579:3029–3036.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006;26:221–229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Uruno A, Motohashi H. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide. 2011;25:153–160.

    Article  CAS  PubMed  Google Scholar 

  31. Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol. 2010;298:F662–F671.

    Article  CAS  PubMed  Google Scholar 

  32. Kim HJ, Sato T, Rodríguez-Iturbe B, Vaziri ND. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther. 2011;337:583–590.

    Article  CAS  PubMed  Google Scholar 

  33. Yoh K, Itoh K, Enomoto A, et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 2001;60:1343–1353.

    Article  CAS  PubMed  Google Scholar 

  34. Yoh K, Hirayama A, Ishizaki K, et al. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells. 2008;13:1159–1170.

    CAS  PubMed  Google Scholar 

  35. Liu M, Grigoryev DN, Crow MT, et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 2009;76:277–285.

    Article  CAS  PubMed  Google Scholar 

  36. Aminzadeh MA, Reisman SA, Vaziri ND, et al. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease. Redox Biol. 2013;1:527–531.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Aminzadeh MA, Reisman SA, Vaziri ND, Khazaeli M, Yuan J, Meyer CJ. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica. 2014;44:570–578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M, Cui T. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One. 2009;4:e8391.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Li W, Khor TO, Xu C, et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–1489.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bruewer M, Samarin S, Nusrat A. Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci. 2006;1072:242–252.

    Article  CAS  PubMed  Google Scholar 

  41. de Almeida Duarte JB, de Aguilar-Nascimento JE, Nascimento M, Nochi RJ. Bacterial translocation in experimental uremia. Urol Res. 2004;32:266–270.

  42. Wang F, Zhang P, Jiang H, Cheng S. Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci. 2012;57:2856–2862.

    Article  CAS  PubMed  Google Scholar 

  43. McIntyre CW, Harrison LE, Eldehni MT, et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:133–141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Chin MP, Reisman SA, Bakris GL, et al. Mechanisms Contributing to Adverse Cardiovascular Events in Patients with Type 2 Diabetes Mellitus and Stage 4 Chronic Kidney Disease Treated with Bardoxolone Methyl. Am J Nephrol. 2014;39:499–508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by an unrestricted research grant from Reata Pharmaceuticals. WLL was supported by a Sanofi renal fellowship award.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ling Lau.

Additional information

Wei Ling Lau and Shu-Man Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, W.L., Liu, SM., Pahlevan, S. et al. Role of Nrf2 Dysfunction in Uremia-Associated Intestinal Inflammation and Epithelial Barrier Disruption. Dig Dis Sci 60, 1215–1222 (2015). https://doi.org/10.1007/s10620-014-3428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3428-4

Keywords

Navigation