Skip to main content
Log in

The Transcription Factor FOXA2 Suppresses Gastric Tumorigenesis In Vitro and In Vivo

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The transcription factor forkhead box A2 (FOXA2) plays a central role in the development of endoderm-derived organs. It has been reported that FOXA2 acts as a suppressor in many kinds of tumor. However, little is known about the role of FOXA2 in gastric cancer.

Methods

The expression of FOXA2 in gastric cancer tissue samples from 89 patients was assessed by immunohistochemistry, and the clinicopathological characteristics of the samples were analyzed. The human gastric cancer cell line, BGC-823, was used to investigate the effects of FOXA2 in gastric cancer in vitro and in vivo and the potential mechanism involved was explored.

Results

FOXA2 expression in human gastric cancer cell lines and human gastric cancer tissues was lower compared with the normal gastric epithelium cell line GES1 and normal adult gastric tissues, respectively. Patients with high FOXA2 expression level had longer 5-year overall survival than those with low FOXA2 expression level. FOXA2 markedly inhibited growth of BGC-823 cells accompanied with the cell cycle arrest and apoptosis. Infection of BGC-823 cells by FOXA2 lentivirus resulted in reduced cell tumorigenesis in vitro and in vivo. Moreover, expression of Mucin 5AC was up-regulated along with increased expression of exogenous FOXA2 in BGC-823 cells; in contrast, dedifferentiation markers, BMI, CD54 and CD24, were down-regulated.

Conclusions

These results suggest that FOXA2 induces the differentiation of gastric cancer and highlight FOXA2 as a novel therapeutic target and prognostic marker for human gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Danaei G, Vander Hoor S, Lopez AD, Murray CJ, Ezzati M. Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet. 2005;366:1784–1793.

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  3. Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol Rev. 2002;54:129–158.

    Article  CAS  PubMed  Google Scholar 

  4. Xu L, Hui L, Wang S, et al. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma. Cancer Res. 2001;61:3176–3181.

    CAS  PubMed  Google Scholar 

  5. Yin C, Lin Y, Zhang X, et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4α gene. Hepatology. 2008;48:1528–1539.

    Article  CAS  PubMed  Google Scholar 

  6. Zeng X, Lin Y, Yin C, et al. Recombinant adenovirus carrying the hepatocyte nuclear factor-1alpha gene inhibits hepatocellular carcinoma xenograft growth in mice. Hepatology. 2011;54:2036–2047.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman J, Kaestner K. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63:2317–2328.

    Article  CAS  PubMed  Google Scholar 

  8. Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic α-cells. Dev Biol. 2005;278:484–495.

    Article  CAS  PubMed  Google Scholar 

  9. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435:944–947.

    Article  CAS  PubMed  Google Scholar 

  10. Wan H, Kaestner KH, Ang SL, et al. Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 2004;131:953–964.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Gauthier BR, Hagenfeldt-Johansson KA, Iezzi M, Wollheim CB. Foxa2 (HNF3β) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem. 2002;277:17564–17570.

    Article  CAS  PubMed  Google Scholar 

  12. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432:1027–1032.

    Article  CAS  PubMed  Google Scholar 

  13. Halmos B, Bassères DS, Monti S, et al. A transcriptional profiling study of CCAAT/enhancer binding protein targets identifies hepatocyte nuclear factor 3β as a novel tumor suppressor in lung cancer. Cancer Res. 2004;64:4137–4147.

    Article  CAS  PubMed  Google Scholar 

  14. Miyamoto K, Fukutomi T, Akashi-Tanaka S, et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer. 2005;116:407–414.

    Article  CAS  PubMed  Google Scholar 

  15. Akagi T, Luong Q, Gui D, et al. Induction of sodium iodide symporter gene and molecular characterisation of HNF3β/FoxA2, TTF-1 and C/EBPβ in thyroid carcinoma cells. Br J Cancer. 2008;99:781–788.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tang Y, Shu G, Yuan X, Jing N, Song J. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res. 2010;21:316–326.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 2010;70:2115–2125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu M, Lee DF, Chen CT, et al. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell. 2012;45:171–184.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li Z, Tuteja G, Schug J, Kaestner KH. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 2012;148:72–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 2009;23:804–809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 1996;10:267–282.

    CAS  PubMed  Google Scholar 

  22. Montgomery RK, Mulberg AE, Grand RJ. Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology. 1999;116:702–731.

    Article  CAS  PubMed  Google Scholar 

  23. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3:89–101.

    Article  CAS  PubMed  Google Scholar 

  24. Hatziapostolou M, Polytarchou C, Aggelidou E, et al. An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147:1233–1247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Richmond CA, Breault DT. Regulation of gene expression in the intestinal epithelium. Prog Mol Biol Transl Sci. 2010;96:207.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9:265–278.

    Article  CAS  PubMed  Google Scholar 

  27. Buisine M, Devisme L, Savidge T, et al. Mucin gene expression in human embryonic and fetal intestine. Gut. 1998;43:519–524.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Buisine MP, Devisme L, Maunoury V, et al. Developmental mucin gene expression in the gastroduodenal tract and accessory digestive glands. I. Stomach: a relationship to gastric carcinoma. J Histochem Cytochem. 2000;48:1657–1665.

    Article  CAS  PubMed  Google Scholar 

  29. Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol. 2004;51:1–28.

    Article  PubMed  Google Scholar 

  30. Ning BF, Ding J, Yin C, et al. Hepatocyte nuclear factor 4α suppresses the development of hepatocellular carcinoma. Cancer Res. 2010;70:7640–7651.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the China National Key Projects for Infectious Disease (2013ZX10002007-007), the National Natural Science Foundation of China (Key Program 81230011) and the Innovation Program of Shanghai Municipal Education Commission (13ZZ061).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Fen Xie.

Additional information

Chang-Peng Zhu, Jian Wang, and Bin Shi have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CP., Wang, J., Shi, B. et al. The Transcription Factor FOXA2 Suppresses Gastric Tumorigenesis In Vitro and In Vivo. Dig Dis Sci 60, 109–117 (2015). https://doi.org/10.1007/s10620-014-3290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3290-4

Keywords

Navigation