Skip to main content

Advertisement

Log in

Transforming Growth Factor (TGF)-β-Induced MicroRNA-216a Promotes Acute Pancreatitis Via Akt and TGF-β Pathway in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Both transforming growth factor β (TGF-β) and MicroRNA-216a (miR-216a) were reported to be upregulated during acute pancreatitis (AP). Moreover, miR-216a can be induced by TGF-β.

Aim

This study aimed to investigate how TGF-β and miR-216a involved in the pathogenesis of AP both in a mouse model and in rat pancreatic acinar AR42J cells.

Methods

Cerulein-induced AP mouse model was established and pretreated with a TGF-β inhibitor, SB431542. Serum amylase, lipase, tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), TGF-β and histopathological changes of pancreas were determined. Expression of miR-216a was detected by quantitative real-time RT-PCR. Bioinformatics was utilized to predict the targets of miR-216a. Expression levels of phosphatase and tensin homolog (PTEN), mothers against decapentaplegic homolog 7 (Smad7), TGF-β receptor I, total Akt and pAkt were detected by Western blot.

Results

SB431542 significantly decreased serum amylase, lipase, TNF-α, IL-6, TGF-β, histopathological changes of pancreas and expression of miR-216a in cerulein-induced mouse (P < 0.05). TGF-β induced miR-216a in AR42J cells. PTEN and Smad7 were identified to be the possible targets of miR-216a. Transfection of miR-216a mimics (or inhibitors) in AR42J cells downregulated (or upregulated) the expression of PTEN and Smad7, thus affected the expression of downstream pAkt and TGF-β receptor I. The expression changes of these protein caused by miR-216a can be regulated by SB431542 both in mouse model and AR42J cells.

Conclusions

TGF-β promotes AP by inducing miR-216a targeting PTEN and Smad7, thus through PI3K/Akt and TGF-β feedback pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhatia M, Wong FL, Cao Y, Lau HY, et al. Pathophysiology of acute pancreatitis. Pancreatology. 2005;5:132–144.

    Article  PubMed  Google Scholar 

  2. Norman J. The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg. 1998;175:76–83.

    Article  CAS  PubMed  Google Scholar 

  3. Mikami F, Lim JH, Ishinaga H, Ha UH, et al. The transforming growth factor-beta-Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual mechanism involving functional cooperation with NF-kappaB and MAPK phosphatase 1-dependent negative cross-talk with p38 MAPK. J Biol Chem. 2006;281:22397–22408.

    Article  CAS  PubMed  Google Scholar 

  4. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta—an excellent servant but a bad master. J Transl Med. 2012;10:183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hong S, Lee HJ, Kim SJ, Hahm KB. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-beta signaling. World J Gastroenterol. 2010;16:2080–2093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wildi S, Kleeff J, Mayerle J, Zimmermann A, et al. Suppression of transforming growth factor beta signalling aborts caerulein induced pancreatitis and eliminates restricted stimulation at high caerulein concentrations. Gut. 2007;56:685–692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Friess H, Lu Z, Riesle E, Uhl W, et al. Enhanced expression of TGF-betas and their receptors in human acute pancreatitis. Ann Surg. 1998;227:95–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.

    Article  CAS  PubMed  Google Scholar 

  9. Raisch J, Darfeuille-Michaud A, Nguyen HT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 2013;19:2985–2996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–866.

    Article  CAS  PubMed  Google Scholar 

  11. Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA. 2005;11:1461–1470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA. 2006;103:2746–2751.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–247.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kong XY, Du YQ, Li L, Liu JQ, et al. Plasma miR-216a as a potential marker of pancreatic injury in a rat model of acute pancreatitis. World J Gastroenterol. 2010;16:4599–4604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kato M, Putta S, Wang M, Yuan H, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11:881–889.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Malleo G, Mazzon E, Genovese T, Di Paola R, et al. Effects of thalidomide in a mouse model of cerulein-induced acute pancreatitis. Shock. 2008;29:89–97.

    CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  18. Yadav D, Agarwal N, Pitchumoni CS. A critical evaluation of laboratory tests in acute pancreatitis. Am J Gastroenterol. 2002;97:1309–1318.

    Article  CAS  PubMed  Google Scholar 

  19. Malmstrom ML, Hansen MB, Andersen AM, Ersboll AK, et al. Cytokines and organ failure in acute pancreatitis: inflammatory response in acute pancreatitis. Pancreas. 2012;41:271–277.

    Article  CAS  PubMed  Google Scholar 

  20. Xiong J, Ni J, Hu G, Shen J, et al. Shikonin ameliorates cerulein-induced acute pancreatitis in mice. J Ethnopharmacol. 2013;145:573–580.

    Article  CAS  PubMed  Google Scholar 

  21. Molinari F, Frattini M. Functions and regulation of the PTEN gene in colorectal cancer. Front Oncol. 2013;3:326.

    PubMed Central  PubMed  Google Scholar 

  22. Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis. 2007;28:1379–1386.

    Article  CAS  PubMed  Google Scholar 

  23. Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15:177–182.

    Article  CAS  PubMed  Google Scholar 

  24. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang S, Yu D. PI(3)king apart PTEN’s role in cancer. Clin Cancer Res. 2010;16:4325–4330.

    Article  CAS  PubMed  Google Scholar 

  26. Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. Biochem J. 2004;382:1–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Singh VP, Saluja AK, Bhagat L, van Acker GJ, et al. Phosphatidylinositol 3-kinase-dependent activation of trypsinogen modulates the severity of acute pancreatitis. J Clin Invest. 2001;108:1387–1395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu P, Wang J, Yang ZW, Lou XL, Chen C. Regulatory roles of the PI3K/Akt signaling pathway in rats with severe acute pancreatitis. PLoS One. 2013;8:e81767.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol. 2002;191:1–16.

    Article  PubMed  Google Scholar 

  30. Yan X, Chen YG. Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J. 2011;434:1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci. 2013;14:23774–23790.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Briones-Orta MA, Tecalco-Cruz AC, Sosa-Garrocho M, Caligaris C, Macias-Silva M. Inhibitory Smad7: emerging roles in health and disease. Curr Mol Pharmacol. 2011;4:141–153.

    Article  CAS  PubMed  Google Scholar 

  33. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin. 2009;41:263–272.

    Article  CAS  PubMed  Google Scholar 

  34. Monteleone G, Caruso R, Pallone F. Role of Smad7 in inflammatory bowel diseases. World J Gastroenterol. 2012;18:5664–5668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58:629–641.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Science Foundation of China (81370567) and Research Foundation for Middle-aged and Young Scientist in Shandong Province (BS2010SW006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Jianli Zhang, Xianfeng Ning and Wei Cui have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ning, X., Cui, W. et al. Transforming Growth Factor (TGF)-β-Induced MicroRNA-216a Promotes Acute Pancreatitis Via Akt and TGF-β Pathway in Mice. Dig Dis Sci 60, 127–135 (2015). https://doi.org/10.1007/s10620-014-3261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3261-9

Keywords

Navigation