Skip to main content

Advertisement

Log in

Gastritis Promotes an Activated Bone Marrow-Derived Mesenchymal Stem Cell with a Phenotype Reminiscent of a Cancer-Promoting Cell

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis.

Aim

The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype.

Methods

Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1Cre mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1Cre mice were paired to either an uninfected Vav-1Cre littermate or a BL/6 mouse inoculated with Helicobacter pylori.

Results

GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression.

Conclusions

Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Shh:

Sonic hedgehog

GKO:

Gastrin-deficient mouse model

BL/6:

C57BL/6 mice

TGFβ:

Transforming growth factor beta

H. pylori :

Helicobacter pylori

References

  1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.

    Article  CAS  PubMed  Google Scholar 

  2. Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cao H, Xu W, Qian H, et al. Mesenchymal stem cell-like cells derived from human gastric cancer tissues. Cancer Lett. 2009;274:61–71.

    Article  CAS  PubMed  Google Scholar 

  4. Houghton JSC, Nomura S, Rogers AB, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–1571.

    Article  CAS  PubMed  Google Scholar 

  5. Wang SS, Asfaha S, Okumura T, et al. Fibroblastic colony-forming unit bone marrow cells delay progression to gastric dysplasia in a helicobacter model of gastric tumorigenesis. Stem Cells. 2009;27:2301–2311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Shibata W, Ariyama H, Westphalen C, et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut. 2013;62:192–200.

    Article  PubMed  Google Scholar 

  7. Dennler SAJ, Alexaki I, Li A, et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67:6981–6986.

    Article  CAS  PubMed  Google Scholar 

  8. Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C, Peraldi P. Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells. 2009;27:703–713.

    Article  CAS  PubMed  Google Scholar 

  9. Zavros Y, Eaton KA, Kang W, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005;24:2354–2366.

    Article  CAS  PubMed  Google Scholar 

  10. Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and g-cell populations in mice. Gastroenterology. 2002;122:119–133.

    Article  PubMed  Google Scholar 

  11. Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;2:58–60.

    Article  CAS  PubMed  Google Scholar 

  12. Friis-Hansen L, Sundler F, Li Y, et al. Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol. 1998;274:G561–G568.

    CAS  PubMed  Google Scholar 

  13. Castillo M, Martín-Orúe SM, Manzanilla EG, Badiola I, Martín M, Gasa J. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Vet Microbiol. 2006;114:165–170.

    Article  CAS  PubMed  Google Scholar 

  14. Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for firmicutes and bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47:367–373.

    Article  CAS  PubMed  Google Scholar 

  15. Barman M, Unold D, Shifley K, et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76:907–915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fierer N, Jackson JA, Vilgalys R, Jackson RB. Assessment of soil microbial community structure by use of taxon-specific quantitative pcr assays. Appl Environ Microbiol. 2005;71:4117–4120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11:76–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Xiao C, Ogle SA, Schumacher MA, et al. Loss of parietal cell expression of sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology. 2010;138:550–561.

    Article  CAS  PubMed  Google Scholar 

  19. Phinney DG, Kopen G, Isaacson RL, Prockop DJ. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem. 1999;72:570–585.

    Article  CAS  PubMed  Google Scholar 

  20. Kim J, Tang JY, Gong R, et al. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17:388–399.

    Article  CAS  PubMed  Google Scholar 

  21. Lee A, O’Rourke J, de Ungria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of helicobacter pylori infection: introducing the Sydney strain. Gastroenterology. 1997;112:1386–1397.

    Article  CAS  PubMed  Google Scholar 

  22. Duyverman AM, Kohno M, Duda DG, Jain RK, Fukumura D. A transient parabiosis skin transplantation model in mice. Nature Protoc. 2012;7:763–770.

    Article  CAS  Google Scholar 

  23. Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Pan Y, Bai CB, Joyner AL, Wang B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol. 2006;26:3365–3377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100:423–434.

    Article  CAS  PubMed  Google Scholar 

  26. Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S. Sonic hedgehog-induced activation of the Gli1 promoter is mediated by Gli3. J Biol Chem. 1999;274:8143–8152.

    Article  CAS  PubMed  Google Scholar 

  27. DaCosta Byfield S, Major C, Laping NJ, Roberts AB. Sb-505124 is a selective inhibitor of transforming growth factor-beta type i receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2004;65:744–752.

    Article  PubMed  Google Scholar 

  28. De Gasperi R, Rocher AB, Sosa MA, et al. The IRG mouse: a two-color fluorescent reporter for assessing cre-mediated recombination and imaging complex cellular relationships in situ. Genesis. 2008;46:308–317.

    Article  PubMed Central  PubMed  Google Scholar 

  29. de Boer J, Williams A, Skavdis G, et al. Transgenic mice with hematopoietic and lymphoid specific expression of cre. Eur J Immunol. 2003;33:314–325.

    Article  PubMed  Google Scholar 

  30. Rubio D, Garciab S, De la Cuevac T, Pazb MF, Lloydd AC, Bernadb A. Human mesenchymal stem cell transformation is associated with a mesenchymal–epithelial transition. Exp Cell Res. 2008;314:691–698.

    Article  CAS  PubMed  Google Scholar 

  31. Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69:5331–5339.

    Article  PubMed  Google Scholar 

  32. Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–4339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li HFX, Kovi RC, Jo Y, et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 2007;67:10889–10898.

    Article  CAS  PubMed  Google Scholar 

  34. Miura M, Miura Y, Padilla-Nash HM, et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095–1103.

    Article  PubMed  Google Scholar 

  35. Wang Y, Huso DL, Harrington J, et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy. 2005;7:509–519.

    Article  CAS  PubMed  Google Scholar 

  36. Rubio D, Garcia S, Paz MF, et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One. 2008;3:e1398.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Barnes EA, Kong M, Ollendorff V, Donoghue DJ. Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J. 2001;20:2214–2223.

    Article  CAS  PubMed  Google Scholar 

  38. Yoon JW, Kita Y, Frank DJ, et al. Gene expression profiling leads to identification of Gli1-binding elements in target genes and a role for multiple downstream pathways in Gli1-induced cell transformation. J Biol Chem. 2002;277:5548–5555.

    Article  CAS  PubMed  Google Scholar 

  39. Warzecha JGS, Brüning C, Lindhorst E, Arabmothlagh M, Kurth A. Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci. 2006;11:491–496.

    Article  CAS  PubMed  Google Scholar 

  40. Dennler S, André J, Verrecchia F, Mauviel A. Cloning of the human Gli2 promoter: transcriptional activation by transforming growth factor-beta via Smad3/beta-catenin cooperation. J Biol Chem. 2009;284:31523–31531.

    Article  CAS  PubMed  Google Scholar 

  41. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–789.

    Article  CAS  PubMed  Google Scholar 

  42. Riobó NA, Lu K, Ai X, Haines GM, Emerson CPJ. Phosphoinositide 3-kinase and AKT are essential for sonic hedgehog signaling. Proc Natl Acad Sci USA. 2006;103:4505–4510.

    Article  PubMed  Google Scholar 

  43. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene. 2005;24:5775–5789.

    Article  CAS  PubMed  Google Scholar 

  44. Sneddon JB, Zhen HH, Montgomery K, et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA. 2006;103:14842–14847.

    Article  CAS  PubMed  Google Scholar 

  45. Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying Gli1 target genes. Int J Cancer. 2009;124:109–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ye H, Cheng J, Tang Y, et al. Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Invest. 2012;30:513–518.

    Article  CAS  PubMed  Google Scholar 

  47. Kabashima-Niibe A, Higuchi H, Takaishi H, et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013;104:157–164.

    Article  CAS  PubMed  Google Scholar 

  48. Li GC, Ye QH, Dong QZ, Ren N, Jia HL, Qin LX. Mesenchymal stem cells seldomly fuse with hepatocellular carcinoma cells and are mainly distributed in the tumor stroma in mouse models. Oncol Rep. 2013;29:713–719.

    CAS  PubMed  Google Scholar 

  49. Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide ll-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA. 2009;106:3806–3811.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Cancer Society Research Scholar Award 119072-RSG-10-167-01-MPC (Y. Zavros), Albert J. Ryan Foundation Fellowship (J. Donnelly) and in part by the Digestive Health Center Cincinnati Children’s Medical Health Center (DHC: Bench to Bedside Research in Pediatric Digestive Disease) CHTF/SUB DK078392. We would like to acknowledge the assistance of Monica DeLay manager of the Research Flow Cytometry Core in the Division of Rheumatology at Cincinnati Children’s Hospital Medical Center, supported in part by NIH AR-47363. All flow cytometric data were acquired using equipment maintained by the Research Flow Cytometry Core in the Division of Rheumatology at Cincinnati Children’s Hospital Medical Center, supported in part by NIH AR-47363. We would also like to thank Dr. Linda Samuelson (Department of Molecular and Integrative Physiology, University of Michigan) for donating the gastrin-deficient mice.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Zavros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, J.M., Engevik, A.C., Engevik, M. et al. Gastritis Promotes an Activated Bone Marrow-Derived Mesenchymal Stem Cell with a Phenotype Reminiscent of a Cancer-Promoting Cell. Dig Dis Sci 59, 569–582 (2014). https://doi.org/10.1007/s10620-013-2927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2927-z

Keywords

Navigation