Skip to main content

Advertisement

Log in

PER1 Modulates SGLT1 Transcription In Vitro Independent of E-box Status

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The intestine demonstrates profound circadian rhythmicity in glucose absorption in rodents, mediated entirely by rhythmicity in the transcription, translation, and function of the sodium glucose co-transporter SGLT1 (Slc5a1). Clock genes are rhythmic in the intestine and have been implicated in the regulation of rhythmicity of other intestinal genes; however, their role in the regulation of SGLT1 is unknown. We investigated the effects of one clock gene, PER1, on SGLT1 transcription in vitro.

Methods

Caco-2 cells were stably transfected with knockdown vectors for PER1 and mRNA expression of clock genes and SGLT1 determined using quantitative polymerase chain reaction (qPCR). Chinese hamster ovary (CHO) cells were transiently cotransfected with combinations of the PER1 expression vectors and the wild-type SGLT1-luciferase promoter construct or the promoter with mutated E-box sequences.

Results

Knockdown of PER1 increased native SGLT1 expression in Caco-2 enterocytes, while promoter studies confirmed that the inhibitory activity of PER1 on SGLT1 occurs via the proximal 1 kb of the SGLT1 promoter. E-box sites exerted a suppressive effect on the SGLT1 promoter; however, mutation of E-boxes had little effect on the inhibitory activity of PER1 on the SGLT1 promoter suggesting that the actions of PER1 on SGLT1 are independent of E-boxes.

Conclusions

Our findings suggest that PER1 exerts an indirect suppressive effect on SGLT1, possibly acting via other clock-controlled genes binding to non-E-box sites on the SGLT1 promoter. Understanding the regulation of rhythmicity of SGLT1 may lead to new treatments for the modulation of SGLT1 expression in conditions such as malabsorption, diabetes, and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Bmal1:

Brain muscle Arnt-like 1

Cry:

Cryptochrome

Mdr1:

Multidrug resistance 1

mRNA:

Messenger ribonucleic acid

Nhe3:

Na+/H+ exchanger

Per:

Period

PVDF:

Polyvinylidenefluoride

SGLT1:

Sodium glucose cotransporter 1

References

  1. Balakrishnan A, Stearns AT, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (sglt1). Surgery. 2008;143:813–818.

    Article  PubMed  Google Scholar 

  2. Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cdna sequencing of the na+/glucose co-transporter. Nature. 1987;330:379–381.

    Article  PubMed  CAS  Google Scholar 

  3. Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease—sugars. Best Practice Res. 2003;17:943–956.

    Article  CAS  Google Scholar 

  4. Tavakkolizadeh A, Berger UV, Shen KR, et al. Diurnal rhythmicity in intestinal sglt-1 function, v(max), and mrna expression topography. Am J Physiol Gastrointest Liver Physiol. 2001;280:G209–G215.

    PubMed  CAS  Google Scholar 

  5. Richards AM, Nicholls MG, Espiner EA, et al. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens A. 1986;8:153–166.

    Article  PubMed  CAS  Google Scholar 

  6. Selmaoui B, Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci. 2003;73:3339–3349.

    Article  PubMed  CAS  Google Scholar 

  7. Rohman SM, Emoto N, Nonaka H, et al. Circadian clock genes directly regulate expression of the na(+)/h(+) exchanger nhe3 in the kidney. Kidney Int. 2005;67:1410–1419.

    Article  CAS  Google Scholar 

  8. Saito H, Terada T, Shimakura J, Katsura T, Inui K. Regulatory mechanism governing the diurnal rhythm of intestinal h+/peptide cotransporter 1 (pept1). Am J Physiol Gastrointest Liver Physiol. 2008;295:G395–G402.

    Article  PubMed  CAS  Google Scholar 

  9. Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008;135:1636–1644.e3

    Article  PubMed  CAS  Google Scholar 

  10. Hastings MH. Circadian clocks. Curr Biol. 1997;7:R670–R672.

    Article  PubMed  CAS  Google Scholar 

  11. Panda S, Hogenesch JB. It’s all in the timing: many clocks, many outputs. J Biol Rhythms. 2004;19:374–387.

    Article  PubMed  CAS  Google Scholar 

  12. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–941.

    Article  PubMed  CAS  Google Scholar 

  13. Torra IP, Tsibulsky V, Delaunay F, et al. Circadian and glucocorticoid regulation of rev-erbalpha expression in liver. Endocrinology. 2000;141:3799–3806.

    Article  PubMed  CAS  Google Scholar 

  14. Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor rev-erbalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–260.

    Article  PubMed  CAS  Google Scholar 

  15. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Humoral signals mediate the circadian expression of rat period homologue (rper2) mrna in peripheral tissues. Neurosci Lett. 1998;256:117–119.

    Article  PubMed  CAS  Google Scholar 

  16. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between bmal1 and period homologue mrna in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun. 1998;253:199–203.

    Article  PubMed  CAS  Google Scholar 

  17. Takata M, Burioka N, Ohdo S, et al. Daily expression of mrnas for the mammalian clock genes per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol. 2002;90:263–269.

    Article  PubMed  CAS  Google Scholar 

  18. Sakamoto K, Oishi K, Nagase T, Miyazaki K, Ishida N. Circadian expression of clock genes during ontogeny in the rat heart. NeuroReport. 2002;13:1239–1242.

    Article  PubMed  CAS  Google Scholar 

  19. Balakrishnan A, Stearns AT, Ashley SW, Tavakkolizadeh A, Rhoads DB. Restricted feeding phase shifts clock gene and sodium glucose cotransporter 1 (sglt1) expression in rats. J Nutr. 2010;140:908–914.

    Article  PubMed  CAS  Google Scholar 

  20. Blais A, Bissonnette P, Berteloot A. Common characteristics for na+-dependent sugar transport in caco-2 cells and human fetal colon. J Membr Biol. 1987;99:113–125.

    Article  PubMed  CAS  Google Scholar 

  21. Martin MG, Wang J, Solorzano-Vargas RS, et al. Regulation of the human na(+)-glucose cotransporter gene, sglt1, by hnf-1 and sp1. Am J Physiol Gastrointest Liver Physiol. 2000;278:G591–G603.

    PubMed  CAS  Google Scholar 

  22. Krasinski SD, Van Wering HM, Tannemaat MR, Grand RJ. Differential activation of intestinal gene promoters: Functional interactions between gata-5 and hnf-1 alpha. Am J Physiol Gastrointest Liver Physiol. 2001;281:G69–G84.

    PubMed  CAS  Google Scholar 

  23. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122:803–815.

    Article  PubMed  CAS  Google Scholar 

  24. Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell. 2001;105:683–694.

    Article  PubMed  CAS  Google Scholar 

  25. Bae K, Jin X, Maywood ES, et al. Differential functions of mper1, mper2, and mper3 in the scn circadian clock. Neuron. 2001;30:525–536.

    Article  PubMed  CAS  Google Scholar 

  26. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929–937.

    Article  PubMed  CAS  Google Scholar 

  27. Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology. 2007;148:6083–6091.

    Article  PubMed  CAS  Google Scholar 

  28. Moon YS, Latasa MJ, Griffin MJ, Sul HS. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res. 2002;43:691–698.

    PubMed  CAS  Google Scholar 

  29. Berberich C, Durr I, Koenen M, Witzemann V. Two adjacent e box elements and a m-cat box are involved in the muscle-specific regulation of the rat acetylcholine receptor beta subunit gene. Eur J Biochem/FEBS. 1993;216:395–404.

    Article  CAS  Google Scholar 

  30. Iwashina I, Mochizuki K, Inamochi Y, Goda T. Clock genes regulate the feeding schedule-dependent diurnal rhythm changes in hexose transporter gene expressions through the binding of bmal1 to the promoter/enhancer and transcribed regions. J Nutr Biochem. 2011;22:334–343.

    Article  PubMed  CAS  Google Scholar 

  31. Lenka N, Basu A, Mullick J, Avadhani NG. The role of an e box binding basic helix loop helix protein in the cardiac muscle-specific expression of the rat cytochrome oxidase subunit viii gene. J Biol Chem. 1996;271:30281–30289.

    Article  PubMed  CAS  Google Scholar 

  32. Oishi K, Shirai H, Ishida N. Clock is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (pparalpha) in mice. Biochem J. 2005;386:575–581.

    Article  PubMed  CAS  Google Scholar 

  33. Nakashima A, Kawamoto T, Honda KK, et al. Dec1 modulates the circadian phase of clock gene expression. Mol Cell Biol. 2008;28:4080–4092.

    Article  PubMed  CAS  Google Scholar 

  34. Shen M, Kawamoto T, Yan W, et al. Molecular characterization of the novel basic helix-loop-helix protein dec1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun. 1997;236:294–298.

    Article  PubMed  CAS  Google Scholar 

  35. Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL. Circadian periodicity of intestinal na+/glucose cotransporter 1 mrna levels is transcriptionally regulated. J Biol Chem. 1998;273:9510–9516.

    Article  PubMed  CAS  Google Scholar 

  36. Balakrishnan A, Stearns AT, Rhoads DB, Ashley SW, Tavakkolizadeh A. Defining the transcriptional regulation of the intestinal sodium-glucose cotransporter using rna-interference mediated gene silencing. Surgery. 2008;144:168–173.

    Article  PubMed  Google Scholar 

  37. Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the period1 gene. EMBO J. 2001;20:3967–3974.

    Article  PubMed  CAS  Google Scholar 

  38. Hoogerwerf WA, Shahinian VB, Cornelissen G, et al. Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol. 2010;298:G143–G150.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by NIH—5 R01 DK047326 (S.W.A.), ADA—7-05-RA-121 (D.B.R.), Harvard Clinical Nutrition Research Center—P30-DK040561 (A.T.), Nutricia Research Foundation (A.B.) and Berkeley Fellowship (A.T.S.).

Conflict of interest

All authors confirm no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita Balakrishnan or Ali Tavakkolizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, A., Stearns, A.T., Ashley, S.W. et al. PER1 Modulates SGLT1 Transcription In Vitro Independent of E-box Status. Dig Dis Sci 57, 1525–1536 (2012). https://doi.org/10.1007/s10620-012-2166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2166-8

Keywords

Navigation